EXHIBIT 10

.

FEDERAL REGISTER

Vol.	77	Tuesday,		
No.	181	September	18,	2012

Pages 57481-57984

OFFICE OF THE FEDERAL REGISTER

The FEDERAL REGISTER (ISSN 0097-6326) is published daily, Monday through Friday, except official holidays, by the Office of the Federal Register, National Archives and Records Administration, Washington, DC 20408, under the Federal Register Act (44 U.S.C. Ch. 15) and the regulations of the Administrative Committee of the Federal Register (1 CFR Ch. I). The Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 is the exclusive distributor of the official edition. Periodicals postage is paid at Washington, DC.

The FEDERAL REGISTER provides a uniform system for making available to the public regulations and legal notices issued by Federal agencies. These include Presidential proclamations and Executive Orders, Federal agency documents having general applicability and legal effect, documents required to be published by act of Congress, and other Federal agency documents of public interest.

Documents are on file for public inspection in the Office of the Federal Register the day before they are published, unless the issuing agency requests earlier filing. For a list of documents currently on file for public inspection, see www.ofr.gov.

The seal of the National Archives and Records Administration authenticates the Federal Register as the official serial publication established under the Federal Register Act. Under 44 U.S.C. 1507, the contents of the Federal Register shall be judicially noticed.

The Federal Register is published in paper and on 24x microfiche. It is also available online at no charge at *www.fdsys.gov*, a service of the U.S. Government Printing Office.

The online edition of the Federal Register is issued under the authority of the Administrative Committee of the Federal Register as the official legal equivalent of the paper and microfiche editions (44 U.S.C. 4101 and 1 CFR 5.10). It is updated by 6:00 a.m. each day the Federal Register is published and includes both text and graphics from Volume 59, 1 (January 2, 1994) forward. For more information, contact the GPO Customer Contact Center, U.S. Government Printing Office. Phone 202-512-1800 or 866-512-1800 (tall free). E-meil. gro@custbeln.com (toll free). E-mail, gpo@custhelp.com.

The annual subscription price for the Federal Register paper The annual subscription price for the Federal Register paper edition is \$749 plus postage, or \$808, plus postage, for a combined Federal Register, Federal Register Index and List of CFR Sections Affected (LSA) subscription; the microfiche edition of the Federal Register including the Federal Register Index and LSA is \$165, plus postage. Six month subscriptions are available for one-half the annual rate. The prevailing postal rates will be applied to orders according to the delivery method requested. The price of a single copy of the daily Federal Register, including postage, is based on the number of pages: \$11 for an issue containing is based on the number of pages: \$11 for an issue containing less than 200 pages; \$22 for an issue containing 200 to 400 pages; and \$33 for an issue containing more than 400 pages. Single issues of the microfiche edition may be purchased for \$3 per copy, including postage. Remit check or money order, made payable to the Superintendent of Documents, or charge to your GPO Deposit Account, VISA, MasterCard, American Express, or Discover. Mail to: U.S. Government Printing Office-New Orders, P.O. Box 979050, St. Louis, MO 63197-9000; or call toll free 1-866-512-1800, DC area 202-512-1800; or go to the U.S. Government Online Bookstore site, see bookstore.gpo.gov.

There are no restrictions on the republication of material appearing in the Federal Register.

How To Cite This Publication: Use the volume number and the page number. Example: 77 FR 12345.

Postmaster: Send address changes to the Superintendent of Documents, Federal Register, U.S. Government Printing Office, Washington, DC 20402, along with the entire mailing label from the last issue received.

SUBSCRIPTIONS AND COPIES

PUBLIC	
Subscriptions:	
Paper or fiche	202-512-1800
Assistance with public subscriptions	202-512-1806
General online information 202–512–1530 Single copies/back copies:	; 1-888-293-6498
Paper or fiche	202-512-1800
Assistance with public single copies	1-866-512-1800
a and a second	(Toll-Free)
FEDERAL AGENCIES	
Subscriptions:	
Paper or fiche	202-741-6005
Assistance with Federal agency subscriptions	202-741-6005

FEDERAL REGISTER WORKSHOP

THE FEDERAL REGISTER: WHAT IT IS AND HOW TO USE IT

- FOR: Any person who uses the Federal Register and Code of Federal Regulations.
- WHO: Sponsored by the Office of the Federal Register.

WHAT: Free public briefings (approximately 3 hours) to present:

- 1. The regulatory process, with a focus on the Federal Register system and the public's role in the development of regulations.
 - 2. The relationship between the Federal Register and Code of Federal Regulations.
 - 3. The important elements of typical Federal Register documents.
 - 4. An introduction to the finding aids of the FR/CFR system.
- WHY: To provide the public with access to information necessary to research Federal agency regulations which directly affect them. There will be no discussion of specific agency regulations.

WHEN: Tuesday, October 23, 2012 9 a.m.-12:30 p.m.

WHERE: Office of the Federal Register **Conference Room, Suite 700** 800 North Capitol Street, NW. Washington, DC 20002

RESERVATIONS: (202) 741-6008

Contents

Agriculture Department See Forest Service

Alcohol, Tobacco, Firearms, and Explosives Bureau NOTICES

- Agency Information Collection Activities; Proposals, Submissions, and Approvals:
 - Application and Permit for Permanent Exportation of Firearms, 57591–57592

ATF Distribution Center Survey, 57590–57591 Employee Possessor Questionnaire, 57592–57593 Furnishing of Samples, 57593

Manufacturers of Ammunition, Records and Supporting Data of Ammunition Manufactured and Disposed of, 57592

Bureau of Consumer Financial Protection NOTICES

Agency Information Collection Activities; Proposals, Submissions, and Approvals, 57560–57561

Coast Guard

RULES

Drawbridge Operations:

- Grosse Tete Bayou, Iberville Parish, LA, 57492–57494 Safety Zones:
- Fleet Week Fireworks, San Francisco Bay, San Francisco, CA, 57494–57495

NOTICES

Notices of Arrival on the Outer Continental Shelf, 57572-57573

Commerce Department

See National Oceanic and Atmospheric Administration See National Technical Information Service See Patent and Trademark Office NOTICES

Agency Information Collection Activities; Proposals, Submissions, and Approvals, 57556–57557

Defense Department

See Navy Department

RULES

Federal Voting Assistance Program, 57486–57492 PROPOSED RULES

Federal Acquisition Regulations:

Positive Law Codification of Title 41, 57950–57979 NOTICES

Privacy Act; Systems of Records, 57561-57562

Education Department

NOTICES

Agency Information Collection Activities; Proposals, Submissions, and Approvals:

Exploratory Study on the Identification of English Learners with Disabilities, 57563

Employment and Training Administration NOTICES

- Agency Information Collection Activities; Proposals, Submissions, and Approvals:
- Reemployment Demonstration Grants and Projects, 57593-57594

Federal Register

Vol. 77, No. 181

Tuesday, September 18, 2012

- Statement of Expenditures and Financial Adjustments of Federal Funds for Unemployment Compensation for Federal Employees and Ex-Service Members Report, 57594-57595
- Unemployment Compensation for Ex-Servicemembers, 57595–57596

Energy Department

See Federal Energy Regulatory Commission

Environmental Protection Agency

RULES

Approvals and Promulgations of Implementation Plans: Montana; State Implementation Plan and Regional Haze Federal Implementation Plan, 57864-57919 National Priorities List, Final Rule No. 55, 57495-57504 **PROPOSED RULES** Long Term 2 Enhanced Surface Water Treatment Rule: Monitoring Data Analysis, Occurrence Forecasts, Binning, and Microbial Toolbox; Public Meeting, 57545-57546 National Priorities List: Proposed Rule No. 57, 57546-57554 NOTICÊS Letters Seeking a Waiver of the Renewable Fuel Standard; Comment Period Extension, 57565–57566 Meetings: **Consumer Confidence Report Rule; Correction, 57566 Executive Office of the President** See Presidential Documents Federal Aviation Administration BUILES **Airworthiness Directives:** Airbus Airplanes, 57484-57486 Special Conditions: Embraer S.A., Models EMB-135 and EMB-145 Series; Airplane Seats with Non-Traditional, Large, Non-Metallic Panels, 57481-57484 **PROPOSED RULES Airworthiness Directives:** Piper Aircraft, Inc. Airplanes, 57534–57536 Stemme GmbH and Co. KG Powered Sailplanes, 57531-57533 The Boeing Company Airplanes, 57529–57531, 57536– 57544 Stage 3 Helicopter Noise Certification Standards, 57524-57528 Federal Communications Commission AULES Special Access for Price Cap Local Exchange Carriers:

AT&T Corporation Petition; Rulemaking to Reform Regulation of Incumbent Local Exchange Carrier Rates for Interstate Special Access Services, 57504– 57523

Federal Emergency Management Agency NOTICES

Emergency Declarations:

Louisiana; Amendment No. 2, 57574 Mississippi; Amendment No. 2, 57573–57574 Major Disaster Declarations: Louisiana; Amendment No. 10, 57575-57576 See Coast Guard Louisiana; Amendment No. 7, 57576 Louisiana; Amendment No. 8, 57575 Louisiana; Amendment No. 9, 57574-57575 **PROPOSED RULES** Mississippi; Amendment No. 3, 57575 Mississippi; Amendment No. 4, 57574 Mississippi; Amendment No. 5, 57576 Federal Energy Regulatory Commission NOTICES NOTICES Combined Filings, 57563-57565 **Complaints:** New York Association of Public Power v. Niagara Mohawk Power Corp., 57565 **Operating Conditions:** EasTrans, LLC, 57565 **Fish and Wildlife Service** RULES Endangered and Threatened Wildlife and Plants: Endangered Status for 23 Species on Oahu and Designation of Critical Habitat for 124 Species, 57648-57862 **PROPOSED RULES** NOTICES **Endangered and Threatened Wildlife and Plants:** 12-Month Finding on Petition to List 14 Aquatic Mollusks as Endangered or Threatened, 57922-57948 NOTICES **Meetings:** Wildlife and Hunting Heritage Conservation Council, 57577-57578 Food and Drug Administration NOTICES Agency Information Collection Activities; Proposals, Submissions, and Approvals: NOTICES **Registration and Product Listing for Owners and Operators of Domestic Tobacco Product** Establishments and Listing of Ingredients in Tobacco Products; Correction, 57568-57569 Meetings: Science Advisory Board to the National Center for **Filing of Plats** Toxicological Research, 57569 **Requests for Nonvoting Industry Representatives:** Colorado, 57580 Transmissible Spongiform Encephalopathies Advisory Meetings: Committee, 57570 **Forest Service** NOTICES **PROPOSED RULES Meetings:** Lake County Resource Advisory Committee, 57556 Lake Tahoe Basin Federal Advisory Committee, 57556 NOTICES **General Services Administration** 57596 **PROPOSED RULES** Federal Acquisition Regulations: NOTICES Positive Law Codification of Title 41, 57950–57979 Health and Human Services Department See Food and Drug Administration See National Institutes of Health NOTICES NOTICES Meetings: Health Information Technology Policy Committee, 57567

World Health Organization Grants; Single Source **Cooperative Agreement Awards:** Smallpox Research Oversight Activities - WHO Advisory

Committee on Variola Virus Research, 57567-57568

Homeland Security Department

See Federal Emergency Management Agency

Housing and Urban Development Department

Native American Housing Assistance and Self-Determination Reauthorization Act of 1996: Request for Nominations for Negotiated Rulemaking Committee Membership, 57544-57545

Agency Information Collection Activities; Proposals, Submissions, and Approvals:

Legal Instructions Concerning Applications for Full Insurance Benefits - Assignment of Multifamily Mortgages to the Secretary, 57576-57577

Interior Department

See Fish and Wildlife Service See Land Management Bureau See Ocean Energy Management Bureau See Reclamation Bureau

International Trade Commission

Terminations of Investigations:

Certain Integrated Circuits, Chipsets, and Products Containing Same Including Televisions, 57589-57590

Justice Department

See Alcohol, Tobacco, Firearms, and Explosives Bureau

Labor Department

See Employment and Training Administration

Land Management Bureau

Agency Information Collection Activities; Proposals, Submissions, and Approvals, 57578-57579 Envirnmental Assessments; Availability, etc.: Southern Diablo Mountain Range and Central Coast of

California Resource Management Plan Amendments, 57579-57580

Wyoming Resource Advisory Council, 57580-57581

National Aeronautics and Space Administration

Federal Acquisition Regulations:

Positive Law Codification of Title 41, 57950-57979

Government-Owned Inventions; Available for Licensing,

National Credit Union Administration

Meetings; Sunshine Act, 57596-57597

National Highway Traffic Safety Administration

Tentative Decisions that Certain Canadian-Certified Vehicles are Eligible for Importation, 57641-57645

National Institutes of Health

NOTICES

Meetings:

Center for Scientific Review, 57571-57572

not meet the definition of critical habitat.

• In addition, Department of Defense lands on Naval Station Pearl Harbor Lualualei Branch (NAVMAG PH Lualualei) and Naval Radar Transmittal Facility at Lualualei (NRTF Lualualei) (380 acres; 154 hectares) with a completed and effective integrated natural resource management plan (INRMP) have been exempted from this final designation under section 4(a)(3) of the Act.

• All lands being designated as critical habitat are either (1) currently considered to be occupied by one or more of the 124 species, and contain physical or biological features essential to the conservation of the species by supporting the life-history needs of the species and that may require special management, or (2) areas outside the geographical areas occupied by the species at the time of listing, which the Secretary has determined are essential for the conservation of the species.

Peer reviewers support our methods. We obtained opinions from knowledgeable individuals with scientific expertise to review our technical assumptions, analysis, and whether or not we had used the best available information. These peer reviewers generally concurred with our methods and conclusions and provided additional information, clarifications, and suggestions to improve this final rule.

Previous Federal Actions

Federal actions for these species prior to August 2, 2011, are outlined in our proposed rule (76 FR 46362), which was

published on that date. Publication of the proposed rule opened a 60-day comment period, which closed on October 3, 2011. In addition, we published a public notice of the proposed rule on August 6, 2011, in the local Honolulu Star Advertiser newspaper. On April 12, 2012 (77 FR 21936) we made available the draft economic analysis (DEA) on proposed critical habitat designation, and opened a 30-day comment period on the DEA, as well as reopened the comment period on the entire August 2, 2011 proposed rule (76 FR 46362). This second comment period closed on May 14, 2012.

Background

An Ecosystem-Based Approach To Listing 23 Species on Oahu

On the island of Oahu, as on most of the Hawaiian Islands, native species that occur in the same habitat types (ecosystems) depend on many of the same biological features and on the successful functioning of that ecosystem to survive. We have therefore organized the species addressed in this final rule by common ecosystems. Although the listing determination for each species is analyzed separately, we have organized the specific analysis for each species within the context of the broader ecosystem in which it occurs, to avoid redundancy. In addition, native species that share ecosystems often face a suite of common factors that may pose threats to them, and ameliorating or eliminating these threats requires similar management actions. Effective management of these threats often requires implementation of conservation

actions at the ecosystem scale, to enhance or restore critical ecological processes and provide for long-term viability of those species in their native environment. Thus, by taking this approach, we hope not only to organize this rule efficiently, but also to more effectively focus conservation management efforts on the common threats that occur across these ecosystems, restore ecosystem functionality for the recovery of each species, and provide conservation benefits for associated native species, thereby potentially precluding the need to list other species under the Act (16 U.S.C. 1531 et seq.) that occur in these shared ecosystems.

We are listing Bidens amplectens, Cyanea calycina, Cyanea lanceolata, Cyanea purpurellifolia, Cyrtandra gracilis, Cyrtandra kaulantha, Cyrtandra sessilis, Cyrtandra waiolani, Doryopteris takeuchii, Korthalsella degeneri, Melicope christophersenii, Melicope hiiakae, Melicope makahae, Platydesma cornuta var. cornuta, Platydesma cornuta var. decurrens, Pleomele forbesii, Psychotria hexandra ssp. oahuensis, Pteralyxia macrocarpa, Tetraplasandra lydgatei, and Zanthoxylum oahuense; and the blackline (Megalagrion nigrohamatum nigrolineatum), crimson (M. leptodemas), and oceanic (M. oceanicum) Hawaiian damselflies, endemic to the island of Oahu, as endangered species. These 23 species (20 plants and 3 damselflies) are found in 7 ecosystem types: coastal, lowland dry, lowland mesic, lowland wet, montane wet, dry cliff, and wet cliff (Table 1).

TABLE 1-THE 23 SPECIES AND THE ECOSYSTEMS UPON WHICH THEY DEPEND

Ecosystem	Species
Coastal	Plants: Bidens amplectens.
Lowland Dry	Plants: Bidens amplectens, Dorvooteris takeuchii, Pleomele forbesii,
Lowland Mesic	Planta: Cyanea calycina, Cyanea lanceolata, Melicope makahae, Platydesma comuta var. decurrens, Pleomele forbesil, Pteralyxia macrocarpa, Tetraplasandra lydgatei
	Animals: oceanic Hawaiian damselfiy.
Lowland Wet	Plants: Cyanea calycina, Cyanea lanceolata, Cyanea purpureliifolla, Cyrtandra gracilis, Cyrtandra kaulantha, Cyrtandra sessilis, Cyrtandra walolani, Melicope hilakae, Platydesma comuta var. comuta, Psychotria hexandra ssp. oahuensis, Pteralyxia macrocarpa, Zanthoxylum oahuense Animals: blackline Hawailan damselfly, crimson Hawailan damselfly, oceanic Hawailan damselfly.
Montane Wet	Planta: Cvanea calvcina, Melicope christophersenii.
Dry Cliff	Plants: Korthalsella degeneri, Melicope makahae, Platydesma comuta var. decurrens, Pleomele forbesil, Pteralyxia macrocarpa.
Wet Cliff	Plants: Cyanea calycina, Cyanea purpurellifolia, Cyrtandra kaulantha, Cyrtandra sessilis, Melicope christophersenil, Psychotria hexandra ssp. oahuensis, Pterlyxia macrocarpa Animals: crimson Hawalian damselfly, oceanic Hawalian damselfly

Most of these species are found in multiple ecosystems. For each species, we identified and evaluated those factors that pose threats to the species and that may be common to all of the species at the ecosystem level (see discussion below in Summary of Factors Affecting the 23 Species). For example, climate change is considered a threat to each species within each ecosystem. As a result, this threat factor is considered to be a multiple ecosystem threat, as each individual species within each ecosystem faces a threat that is essentially identical in terms of the nature of the impact, its severity, its imminence, and its scope. We further identified and evaluated any threat factors that may be unique to certain species, that is, threat factors that do not apply to all species under consideration within the same ecosystem. For example, the threat of predation by nonnative fish is unique to the three damselflies in this rule; it is not applicable to any of the other species being listed. We have identified such threat factors, which apply only to certain species within the ecosystems addressed here, as species-specific threats.

An Ecosystem-Based Approach to Determining Physical or Biological Features of Critical Habitat

Under the Act, we are required to designate critical habitat to the maximum extent prudent and determinable concurrently with the publication of a final determination that a species is endangered or threatened. In this rule, we are designating critical habitat for the 23 Oahu species which we have found to meet the definition of an endangered species. We are also designating critical habitat for two Oahu plants that are already listed as endangered species but for which critical habitat has not been previously designated. In addition, we are revising critical habitat for 99 Oahu plants already listed as endangered or threatened species. When critical habitat was designated for these 99 Oahu plant species in 2003 (68 FR 35950; June 17, 2003), it was based primarily on the specific localities where the species were known to occur. We are revising critical habitat for these species because since then, we have learned that many native Hawaiian plants and animals can thrive when reintroduced into historical habitats when threats are effectively managed. For this reason, we believe it is important to designate unoccupied habitat where it is essential for the recovery of the species. Based on new information on plant occurrences and a better understanding of the species' biological requirements, the physical or biological features have been more precisely identified, and now include elevation, precipitation, substrate, canopy, subcanopy, and understory characteristics. We believe the added precision will be helpful in identifying the special management considerations or protections needed in specific occupied areas to recover the species. In addition, because the 2003 designation

focused on discrete areas occupied by the species at the time of listing, the result was an overlapping and confusing patchwork of critical habitat areas for the 99 plant species that was difficult for the public to interpret. Although this revision of critical habitat is solely based on our determination of the lands that meet the statutory definition of critical habitat (16 U.S.C. 1532(5) and other applicable provisions (e.g., 16 U.S.C. 1533(4)(b)(2)), we believe the end result will provide for greater public understanding of the conservation and recovery needs of each of the species in the specific areas addressed in this rule.

In this rule, we are designating critical habitat for 124 species in 62 multiplespecies critical habitat units. Although critical habitat is identified for each species individually, we have found that the conservation of each depends, at least in part, on the successful functioning of the physical or biological features of the commonly shared ecosystem. Each critical habitat unit identified in this rule contains the physical or biological features essential to the conservation of those individual species that occupy that particular unit, or contains areas essential to the conservation of those individual species that do not presently occupy that particular unit, but depend on that ecosystem type for recovery purposes. Where the unit is not known to be occupied by a particular species, we believe it is still essential for the conservation of that species. The designation of unoccupied habitat allows for the expansion of its range and reintroduction of individuals into areas where it occurred historically, and provides areas for recovery in the case of a stochastic event at one or more locations where the species occurs.

Each of the designated areas represents critical habitat for multiple species, based upon their shared habitat requirements, and takes into account any species-specific conservation needs as appropriate (see discussion below in Methods). For example, the presence of a perennial stream is essential for the conservation of the blackline Hawaiian damselfly, but is not a requirement shared by all species within the same ecosystem; however, a functioning ecosystem is also essential to the damselfly because the ecosystem provides other physical or biological features that support the damselfly's specific life-history requirements.

The Island of Oahu

The island of Oahu is the third oldest and third largest of the eight main Hawaiian Islands, located southeast of Kauai and northwest of Molokai and Lanai (Foote et al. 1972, p. 19; Department of Geography, University of Hawaii at Hilo (UHH) 1998, pp. 7-10). It was formed from two shield volcanoes, the Koolau Volcano and the Waianae Volcano, that ceased erupting about 1 to 2 million years ago, and is about 600 square (sq) miles (mi) (1,557 sq kilometers (km)) in area (Macdonald and Abbot 1970, p. 265; Foote et al. 1972, p. 19; Department of Geography, UHH 1998, pp. 7–10; Rowland and Garcia 2004, p. 1). Two mountain ranges resulted from these eruptions, the western Waianae range and eastern Koolau range. Oahu is characterized by the fact that the two mountain ranges are aligned perpendicular to the prevailing trade winds, so that distinctive leeward and windward climates result, with the Waianae range in the rain shadow of the Koolau range (Department of Geography, UHH 1998, pp. 7-10; Wagner et al. (adapted from Price (1983) and Carlquist (1980) 1999, p. 39). The maximum elevation on Oahu is 4,025 feet (ft) (1,225 meters (m)) at the summit of Mount Kaala in the Waianae Mountains, and this higher elevation area is not affected by the Koolau rain shadow (Blumenstock and Price 1972, p. 156; Wagner et al. [adapted from Price (1983) and Carlquist (1980) 1999, pp. 39-41). The maximum elevation is relatively low compared to the higher Hawaiian Islands. Consequently, Oahu does not have dry alpine areas, as the mountains do not reach the height of the temperature inversion layer (Wagner et al. (adapted from Price (1983) and Carlquist (1980)] 1999, pp. 38, 40). Rainfall ranges from less than 20 inches (in) (50 centimeters (cm)) to more than 250 in (635 cm) per year (Department of Geography, UHH 1998, p. 7). **Temperatures in the Hawaiian Islands** differ by an average of 41 degrees Fahrenheit (°F) (22 degrees Celsius (°C)) throughout the year. Since temperature decreases with increasing elevation, microclimates range from tropical to sub-arctic across the island chain (Wagner et al. [adapted from Price (1983) and Carlquist (1980)] 1999, pp. 37-38), although the sub-arctic zone does not occur on Oahu.

The current soil classification system for the Hawaiian Islands distinguishes soil types based on their measurable physical and chemical properties, and environmental factors that influenced their formation. Widely ranging geological ages of rocks, different rates of weathering, and microclimates create these highly variable soils (Sherman 1972, pp. 205–207). Most soils are volcanic in origin; a few formed from organic material and sand (Foote *et al.* 1972, p. 1). On Oahu, sizable areas of highly weathered, red-colored oxisols (nutrient-poor soils, red or yellowish) occur on the Schofield Plateau; in contrast, the Koolau and Waianae mountain ranges have large areas of rocky, unweathered entisols (soils with few or no horizontal layers) due to erosion (Gavenda *et al.* 1998, p. 92).

Because of its age and relative isolation, species diversity and endemism are high in the Hawaiian archipelago (Gagne and Cuddihy 1999, p. 45). However, the flora and fauna of Oahu have undergone extreme alterations because of past and present land use and other activities. Land with rich soils was altered by the early Hawaiians and, more recently, converted to agricultural use (Gagne and Cuddihy 1999, p. 45) or pasture. Intentional and inadvertent introduction of alien plant and animal species has contributed to the reduction in range of native species on the island (throughout this rule, the terms "alien," "feral, "nonnative," and "introduced" all refer to species that are not naturally native to the Hawaiian Islands). Most of the taxa included in this rule persist on steep slopes, precipitous cliffs, valley headwalls, and other regions where unsuitable topography has prevented urbanization and agricultural development, or where inaccessibility has limited encroachment by nonnative plant and animal species.

Oahu Ecosystems

The seven Oahu ecosystems that support the species addressed in this rule are described in the following sections.

Coastal

The coastal ecosystem is found on all of the main Hawaiian Islands, with the highest species diversity in the least populated coastal areas of Hawaii, Maui, Molokai, Kahoolawe, Oahu, and Kauai, and their associated islets. On Oahu, the coastal ecosystem includes mixed herblands, shrublands, and grasslands, from sea level to 980 ft (300 m) in elevation, generally within a narrow zone above the influence of waves to within 330 ft (100 m) inland, sometimes extending further inland if strong prevailing onshore winds drive sea spray and sand dunes into the lowland zone (The Nature Conservancy (TNC) 2006a). The coastal vegetation zone is typically dry, with annual rainfall of less than 20 in (50 cm), however windward rainfall may be high enough (up to 40 in (100 cm)) to support mesicassociated and sometimes wetassociated vegetation (Gagne and Cuddihy 1999, pp. 54–66). Biological

diversity is low to moderate in this ecosystem, but may include some specialized plants and animals such as nesting seabirds and the rare native plant Sesbania tomentosa (ohai) (TNC 2006a). The plant Bidens amplectens, which is listed as endangered in this final rule, is reported from this ecosystem on Oahu (Hawaii Biodiversity and Mapping Program (HBMP) 2008; TNC 2007).

Lowland Dry

The lowland dry ecosystem includes shrublands and forests generally below 3,300 ft (1,000 m) elevation that receive less than 50 in (130 cm) annual rainfall, or are in otherwise prevailingly dry substrate conditions. Areas consisting of predominantly native species in the lowland dry ecosystem are now rare; however, this ecosystem is found on the islands of Hawaii, Molokai, Lanai Kahoolawe, Oahu, and Kauai, and is best represented on the leeward sides of the islands (Gagne and Cuddihy 1999, p. 67). On Oahu, this ecosystem is typically found on the leeward side of the Waianae Mountains, and the leeward southern coast, including Diamond Head Crater (Gagne and Cuddihy 1999, p. 67; TNC 2006b). Biological diversity is low to moderate in this ecosystem, and includes specialized animals and plants such as the Hawaiian owl or pueo (Asio flammeus sandwichensis) and Santalum ellipticum (iliahialoe) (Wagner et al. 1999, pp. 1,220-1,221; TNC 2006b). The plants Bidens amplectens, Doryopteris takeuchii, and Pleomele forbesii, which are listed as endangered in this final rule, are reported from this ecosystem on Oahu (HBMP 2008; TNC 2007).

Lowland Mesic

The lowland mesic ecosystem includes a variety of grasslands, shrublands, and forests, generally below 3,300 ft (1,000 m) elevation, that receive between 50 and 75 in (130 and 190 cm) annual rainfall, or are in otherwise mesic substrate conditions (TNC 2006c). In the Hawaiian Islands, this ecosystem is found on Hawaii, Maui, Molokai, Lanai, and Kauai, on both windward and leeward sides of the islands. On Oahu, this ecosystem is typically found on the leeward slopes of both the Waianae and Koolau Mountains (Gagne and Cuddihy 1999, p. 75; TNC 2006c). Biological diversity is high in this system (TNC 2006c). The plants Cyanea calycina, C. lanceolata, Melicope makahae, Platydesma cornuta var. decurrens, Pleomele forbesii, Pteralyxia macrocarpa, and Tetraplasandra lydgatei, and the oceanic Hawaiian damselfly, which are listed as

endangered in this final rule, are reported from this ecosystem (HBMP 2008; TNC 2007).

Lowland Wet

The lowland wet ecosystem is generally found below 3,300 ft (1,000 m) elevation on the windward sides of the main Hawaiian Islands, except Kahoolawe and Niihau (Gagne and Cuddihy 1999, p. 85; TNC 2006d). These areas include a variety of wet grasslands, shrublands, and forests that receive greater than 75 in (190 cm) annual precipitation, or are in otherwise wet substrate conditions (TNC 2006d). On Oahu, this system is best developed in wet valleys and slopes along the summit of the Koolau Mountains, with a small area located on the windward side of the summit of the Waianae Mountains (TNC 2006d). Biological diversity is high in this system (TNC 2006d). The plants Cyanea calycina, C. lanceolata, C. purpurellifolia, Cyrtandra gracilis, C. kaulantha, C. sessilis, C. waiolani, Melicope hiiakae, Platydesma cornuta var. cornuta, Psychotria hexandra ssp. oahuensis, Pteralyxia macrocarpa, and Zanthoxylum oahuense, and the blackline, crimson, and oceanic Hawaiian damselflies, which are listed as endangered in this final rule, are reported from this ecosystem (HBMP 2008; TNC 2007).

Montane Wet

The montane wet ecosystem is composed of natural communities (grasslands, shrublands, forests, and bogs) found at elevations between 3,300 and 6,600 ft (1,000 and 2,000 m), in areas where annual precipitation is greater than 75 in (190 cm) (TNC 2006e). This system is found on all of the main Hawaiian Islands except Niihau and Kahoolawe (only the islands of Molokai, Maui, and Hawaii have areas above 4,020 ft (1,225 m) (TNC 2006e). On Oahu, this ecosystem is found only at the summit of the Waianae Mountains (TNC 2007). Biological diversity is moderate to high (TNC 2006e). Due to the restricted distribution of this ecosystem on Oahu, only the plants Cyanea calycina and Melicope christophersenii, which are listed as endangered in this final rule, are reported from this ecosystem (HBMP 2008; TNC 2007).

Dry Cliff

The dry cliff ecosystem is composed of vegetation communities occupying steep slopes (greater than 65 degrees) in areas that receive less than 75 in (190 cm) of rainfall annually, or are in otherwise dry substrate conditions (TNC 2006f). This ecosystem is found on all Mountains (Polhemus 1994a, p. 7; Polhemus 1994b, pp. 37-38; Englund 1999, pp. 228-229, 231; Polhemus 2007, pp. 234, 238). In 2003, this species was not found during surveys of Kahana Stream and may be extirpated from this stream system (Englund et al. 2003, p. 6). Currently, only three occurrences of the crimson Hawaiian damselfly are known, all from the Koolau Mountains in the lowland wet and wet cliff ecosystems at Moanalua, north Halawa, and Maakua (TNC 2007; Polhemus 2008a, in litt.; HBMP 2008; Preston 2011, in litt.). This species was last observed in the lowland wet ecosystem at Waiawa in the late 1990s (Englund 1999, p. 229). All colonies of this damselfly are constrained to portions of streams not occupied by nonnative predatory fish-that is, stream portions above geologic or manmade barriers (e.g., waterfalls, steep gradients, dry stream midreaches, or constructed diversions). No estimates of population size for the crimson Hawaiian damselfly are available.

The blackline Hawaiian damselfly (Megalagrion nigrohamatum nigrolineatum) is a moderately-sized and delicate subspecies (Polhemus and Asquith 1996, p. 73). It occurs in the slow sections or pools along mid-reach and headwater sections of perennial upland streams and in seep-fed pools along overflow channels bordering such streams. The adults measure from 1.4 to 1.8 in (35 to 45 mm) in length and have a wingspan of 1.7 to 1.9 in (45 to 50 mm). Naiads remain concealed and are found under stones or in mats of algae (Williams 1936, p. 318; Zimmerman 1948a, pp. 371-372).

The blackline Hawaiian damselfly was known historically from the Koolau and Waianae Mountains, from sea level to over 2,400 ft (730 m) (Williams 1936, p. 318; Polhemus 1994a, pp. 6-12). Currently, this species is found in the lowland wet ecosystem on the windward and leeward sides of the Koolau Mountains, in the headwaters and upper reaches of 17 streams: Koloa, Kaipapau, Maakua, upper Kaluanui, Palaa, Helemano headwaters, Poamoho, Kahana, Waiahole, Waiawa, Kaalaea, Waihee, Kahaluu, north Halawa, Heeia. Kalihi, and Maunawili (TNC 2007; Polhemus 2008a, in litt.; Wolff 2008, in litt.; HBMP 2008; Preston 2011, in litt.). Like the crimson Hawaiian damselfly, all colonies of the blackline Hawaiian damselfly are constrained to portions of streams not occupied by nonnative predatory fish—that is, stream portions above geologic or manmade barriers (e.g., waterfalls, steep gradients, dry stream midreaches, or constructed diversions). Currently, the 17 stream

colonies are estimated to total 800 to 1,000 individuals, with approximately 50 individuals per stream (Polhemus 2008c, in litt.).

The oceanic Hawaiian damselfly (Megalagrion oceanicum) is a comparatively large and robust species. The adults measure from 1.8 to 1.9 in (47 to 50 mm) in length and have a wingspan of 2.0 to 2.2 in (51 to 55 mm). Both sexes exhibit prominent patterns including black stripes, but males are bright red in color while females are pale green. Immature individuals of this species are also large with long grasping legs and dagger-like gills (Polhemus and Asquith 1996, p. 77). The oceanic Hawaiian damselfly can be distinguished from other Oahu damselfly species by its large size, black stripes, and fast flight along flowing sections of streams.

Individuals of the immature stage of the oceanic Hawaiian damselfly are found in swiftly flowing sections of streams, usually amid rocks and gravel in stream riffles (stream sections with sufficient gradient to create small standing waves) and small cascades on waterfalls (Williams 1936, pp. 321-322; Polhemus and Asquith 1996, p. 106). While capable of swimming, the naiads usually crawl among gravel or submerged vegetation. Older naiads frequently forage out of the actual stream channel and have been observed among wet moss on rocks, and wet rock walls and seeps (Williams 1936, pp. 321-323). Adults are very bold and strong flyers, and when disturbed frequently fly upward into the forest canopy overhanging the stream or waterfall (Williams 1936, p. 323; Polhemus 1994b, p. 48).

Historically, the oceanic Hawaiian damselfly occurred on both the leeward and windward sides of the Koolau and Waianae Mountains, and was known, but is currently extirpated, from approximately 16 general localities, including the Waianae Mountains and all leeward streams of the Koolau **Mountains (Englund and Polhemus** 1994, p. 8). The species now currently occupies 12 sites above 300 ft (100 m) in elevation on the windward side of the Koolau Mountains at Kahawainui, Wailele, Koloa, Kaipapau, Maakua, upper Kaluanui, Kawaiiki, Opaeula, upper Helemano, Makaua, Waihee, and Kahaluu, in the lowland mesic, lowland wet, and wet cliff ecosystems (TNC 2007; Polhemus 2007, pp. 237-239; HBMP 2008; Preston 2011, in litt.). Like the crimson and blackline Hawaiian damselflies, the oceanic Hawaiian damselfly is constrained to portions of streams not occupied by nonnative predatory fish-that is, stream portions

above geologic or manmade barriers (e.g., waterfalls, steep gradients, dry stream midreaches, or constructed diversions). No estimates of population size for the oceanic Hawaiian damselfly are available.

Summary of Comments and Recommendations

On August 2, 2011, we published a proposed rule to list these 23 Oahu species as endangered throughout their ranges, and to designate critical habitat for 124 species (76 FR 46362). The comment period for the proposal opened on August 2, 2011, and closed on October 3, 2011. We requested that all interested parties submit comments or information concerning the proposed listing and designation of critical habitat for the 124 species. We contacted all appropriate State and Federal agencies, county governments, elected officials, scientific organizations, and other interested parties and invited them to comment. In addition, we published a public notice of the proposed rule on August 6, 2011, in the local Honolulu Star Advertiser newspaper, at the beginning of the comment period. On April 12, 2012, we published a document (77 FR 21936) announcing the availability of our draft economic analysis, requesting comments on it until May 14, 2012, and reopening the comment period on the August 2, 2011, proposed rule (76 FR 46362) until that time as well.

During the comment periods, we received a total of 55 comment letters. We did not receive any requests for public hearings. Four commenters were peer reviewers, 5 were State of Hawaii agencies, 1 was a Federal agency (U.S. Navy), and 45 were nongovernmental organizations or individuals. Due to the nature of the proposed rule, we received combined comments from the public on both the listing action and the critical habitat; we have therefore addressed these issues in a single comment section.

Four of the comment letters supported the listing and designation of critical habitat for the Oahu species. Thirty-one commenters requested that we exclude 695 ac (281 ha) (representing entire or portions of five different critical habitat units), based on possible economic effects of the designation. We reviewed all comments we received for substantive issues and new data regarding the proposed listing of 23 species and designation of critical habitat for 124 species. We have fully considered all substantive comments in this final rule. Written comments we received during the comment periods are addressed in the following

summary. For readers' convenience, we have combined similar comments into single comments and responses.

Peer Review

In accordance with our peer review policy published in the Federal Register on July 1, 1994 (59 FR 34270), we solicited expert opinions from 13 knowledgeable individuals with scientific expertise on the Oahu plants and damselflies and their habitats, including familiarity with the species, the geographic region in which these species occur, and conservation biology principles. We received responses from four of the peer reviewers who were solicited. These four peer reviewers generally supported our methodology and conclusions. One reviewer supported the listing and critical habitat for the Oahu species, one reviewer supported protection of the stream habitat essential to the Hawaiian damselflies, and all four reviewers provided new information on one or more of the Oahu species, which was incorporated into this final rule. We reviewed all comments received from the peer reviewers for substantive issues and new information regarding the listing of 23 species and designation of critical habitat for 124 species. Peer reviewer comments are addressed in the following summary and incorporated into the final rule as appropriate.

Peer Reviewer Comments

(1) Comment: One peer reviewer suggested that we use the more current and accepted terms "ferns and lycophytes" instead of "ferns and allies" in the published rule.

Our Response: We agree that "ferns and lycophytes" is the currently accepted terminology; however, changing the term "ferns and allies" to "ferns and lycophytes" at 50 CFR 17.12 and at 50 CFR 17.99(j) would require a separate rulemaking to amend the Code of Federal Regulations (CFR), not only for the Hawaiian species listings, but for all previously listed species nationwide. This rulemaking would also require an opportunity for public review and comment, which we are unable to accommodate in this final rule.

(2) Comment: One peer reviewer disagreed with our statement that "many native Hawaiian plants and animals currently occupy only areas of marginal habitat because the threats are reduced in those areas," and suggested that the areas where the species currently occur constitute their prime habitat, not marginal habitat.

Our Response? Prime habitat and marginal habitat are not terms used in the Act. However, we agree that some native Hawaiian plants and animals thrive in areas that are "marginal" (i.e., not dominated by other native species) and have modified our statement in this final rule. The areas designated as critical habitat in this final rule include both occupied and unoccupied habitat.

(3) Comment: One peer reviewer expressed concern regarding the potential threat to the three proposed Hawaiian damselflies from the use of biopesticides (pesticides derived from natural materials such as animals, plants, bacteria, and minerals) to combat, for example, mosquitoes.

Our Response: We do not have sufficient data to evaluate the effects that biopesticides, in particular, Bacillus thuringiensis israelensis (Bti), may have on Hawaiian damselflies. Therefore, Bti is not considered a current threat to the three proposed Hawaiian damselflies because the specific impacts to these damselflies are unknown at this time.

(4) Comment: Two peer reviewers provided information from their recent surveys for species of Megalagrion and stated that survey results demonstrated that only streams without nonnative fish provide habitat for native damselflies, and that these streams are crucial for the continued survival of Megalagrion. The commenters also stated that, in addition to predation by nonnative fish, siltation of stream gravel beds and other stream modifications resulting from erosion of nearby riparian habitat caused by the actions of feral ungulates is a significant threat to Megalagrion species. The commenters recommended that the Service should try to protect the remaining stream habitat that is free of nonnative fish, eliminate nonnative fish in the streams in which they occur, and restore streams and surrounding habitat to provide suitable habitat for Hawaii's Megalagrion and other native aquatic species. They also stated that the positive impacts from the removal of nonnative fish and ungulates in aquatic and surrounding habitat will improve overall environmental conditions, that native Hawaiian damselfly larvae may effectively control mosquitoes in place of nonnative fish, and that removal of ungulates in stream areas may reduce the incidence of leptospirosis in Hawaii, which has the largest number of reported cases of this human-health hazard in the United States.

Our Response: We agree that habitat degradation and destruction by feral ungulates and predation of *Megalagrion* spp. by nonnative fish are significant threats to the three species of damselflies in this rule (see Factor A and Factor C, below). Listing these species as endangered and designating their critical habitat will provide conservation benefits including: Protection from being jeopardized by Federal activities; protections against the adverse modification of critical habitat; restrictions on take and trafficking; a requirement that the Service develop and implement recovery plans; authorization to seek land purchases or exchanges for important habitat; and Federal aid to State conservation departments and cooperative endangered species agreements. Listing also lends greater recognition to a species' precarious status, encouraging conservation effort by other agencies, independent organizations, and concerned individuals.

The Service has identified highquality stream habitat in the State of Hawaii and participates in several programs that provide for stream habitat restoration. One of these programs is the Hawaii Fish Habitat Partnership, whose members developed a strategic plan for implementation of stream restoration projects. Also, funding for implementation of stream restoration activities is available through the National Fish Habitat Action Plan (which includes Federal. State. and private partners), and through the National Fish Passage Program (Service), which will allow for migration of native fish and invertebrates (while excluding nonnative fish) into essential headwater stream reaches. Currently, there are two stream restoration projects funded by these programs on the windward side of Oahu. In 2009, funding was provided to restore native habitat in Waihee Stream and provide a barrier to prevent nonnative fish passage into the upper reaches of the stream where the blackline Hawaiian damselfly occurs. In 2010 and 2011, funds were provided to initiate restoration of habitat for native fish and the blackline Hawaiian damselfly at the lower elevations of Heeia Stream. Additional funding will be pursued to restore the habitat further upstream and to construct a barrier to prevent nonnative fish passage into the upper elevation watershed.

Comments From the State of Hawaii

(5) Comment: The Department of Business, Economic Development & Tourism (DBEDT), Office of Planning commented that the proposed rule for the Oahu species is subject to Hawaii Coastal Zone Management (CZM) Program Federal consistency review, pursuant to section 307(c) of the Coastal Zone Management Act (16 U.S.C. 1451 *et seq.*) and 15 CFR part 930, subpart C. In their letter, DBEDT stated that Federal consistency review is required channels, and catastrophic flooding (Polhemus 1993, 88 pp.). Because many Hawaiian plant and animal species, including the 23 species in this final rule, persist in low numbers and in restricted ranges, natural disasters, such as hurricanes, can be particularly devastating (Mitchell *et al.* 2005, p. 4– 3).

Hurricanes affecting Hawaii were only rarely reported from ships in the area from the 1800s until 1949. Between 1950 and 1997, 22 hurricanes passed near or over the Hawaiian Islands, 5 of which caused serious damage (Businger 1998, pp. 1–2). In November 1982, Hurricane Iwa struck the Hawaiian Islands, with wind gusts exceeding 100 miles per hour (mph) (161 kilometers per hour (kph)), causing extensive damage, especially on the islands of Niihau, Kauai, and Oahu (Businger 1998, pp. 2, 6). Many native forest trees were destroyed (Perlman 1992, in litt., pp. 1–9), which opened the canopy and facilitated the invasion of nonnative plants (Kitayama and Mueller-Dombois 1995, p. 671). Historically (prior to the introduction of nonnative, invasive plants to the Hawaiian Islands), it is likely that areas affected by hurricanes would eventually have been repopulated by native plants. However, competition with nonnative plants is exacerbated by hurricanes, and represents a threat to each of the 7 ecosystems and the 20 plant species addressed in this final rule, as described in "Specific Nonnative Plant Species Impacts," in our August 2, 2011, proposed rule (76 FR 46362). In September 1992, Hurricane Iniki, a Category 4 hurricane with maximum sustained wind speeds recorded at 140 mph (225 kph), passed directly over the island of Kauai and close to the island of Oahu, causing significant damage to areas along Oahu's southwestern coast (from Barber's Point or Kalaeloa, to Kaena Point) (Blake et al. 2007, p. 20), where the endangered plant Bidens amplectens occurs. Biologists have documented hurricane damage (e.g., denuded foliage, toppled and uprooted trees and shrubs, landslides) to the habitat of six other plant species (Cyrtandra kaulantha, C. sessilis, Melicope christophersenii, M. hiiakae, Platydesma cornuta var. cornuta, and Psychotria hexandra ssp. oahuensis). Polhemus (1993, pp. 86-87) documented the extirpation of the scarlet Kauai damselfly (Megalagrion vagabundum), a species related to the blackline, crimson, and oceanic Hawaiian damselflies included in this final rule, from the entire Hanakapiai Stream system on the island of Kauai as

a result of the impacts of Hurricane Iniki in 1992. Damage by future hurricanes could further decrease the remaining native-plant-dominated habitat areas that support rare plants and animals in Oahu ecosystems (Bellingham *et al.* 2005, p. 681).

Habitat Destruction and Modification Due to Landslides, Rockfalls, Flooding, and Drought

Landslides, rockfalls, and flooding destabilize substrates, damage and destroy individual plants, and alter hydrological patterns, which result in changes to native plant and animal communities. In the open sea near Hawaii, rainfall averages 25 to 30 in (63 to 76 cm) per year, yet the islands may receive up to 15 times this amount in some places, caused by orographic features (Wagner et al. 1999; adapted from Price (1983) and Carlquist (1980) pp. 38-39). During storms, rain may fall at 3 in (7.6 cm) per hour or more, and sometimes may reach nearly 40 in (100 cm) in 24 hours, causing destructive flash-flooding in streams and narrow gulches (Wagner et al. 1999; adapted from Price (1983) and Carlquist (1980), pp. 38-39). Due to the steep topography of much of the area on Oahu where the species remain, erosion and disturbance caused by introduced ungulates exacerbate the potential for landslides, rockfalls, or flooding, which in turn threaten native plants and some of the damselfly species (see Table 2). For those species that occur in small numbers in highly restricted geographic areas, such events have the potential to eradicate all individuals of a population, or even all populations of a species, resulting in extinction.

Landslides and rockfalls likely adversely impact nine of the species addressed in this final rule, including Cyanea lanceolata, Cyrtandra kaulantha, C. sessilis, Doryopteris takeuchii, Melicope makahae, Platydesma cornuta var. decurrens, Psychotria hexandra ssp. oahuensis, and the crimson and oceanic Hawaiian damselflies, as documented in observations by field botanists and surveyors (HBMP 2008). Monitoring data from the PEP program and the Hawaii Biodiversity and Mapping Program (HBMP) suggest that these nine species face threats from landslides or falling rocks, as they are found in landscape settings susceptible to these events (e.g., steep slopes and cliffs). Since C. kaulantha is known from only a few individuals in steep-walled stream valleys, one landslide could lead to near extirpation of the species by direct destruction of the individual plants, mechanical damage to individual plants

that could lead to their death. destabilization of the cliff habitat leading to additional landslides, and alteration of hydrological patterns (e.g., affecting the availability of soil moisture). Landslides can modify and destroy riparian and stream habitat by direct physical damage (e.g., rocks and debris falling in a stream, mechanical damage to riparian vegetation), and create disturbed areas leading to invasion by nonnative plants that outcompete the native plants, as well as damage or destroy plants used by the crimson and oceanic damselflies for perching. Field survey data presented by Bakutis (2006c, in litt.) and the PEP Program (2006, p. 51) suggest that flooding is a likely threat to two plant species included in this final listing, one population of Psychotria hexandra ssp. oahuensis, located in a narrow gulch, and one population of Cyrtandra sessilis, growing near a stream in a narrow valley. Intermittent flooding events likely occurred in the stream habitats of the blackline, crimson, and oceanic Hawaiian damselflies in the past, due to stochastic events such as storms and hurricanes. However, the current low numbers of individuals and populations, combined with their breeding, life-history requirements in stream habitats, and reduced ranges, of these three Hawaiian damselflies increase their vulnerability to the threat of flooding. The impact of flooding events may be increased by channelization of stream reaches, or degradation of riparian vegetation by feral ungulates. Naiads may be washed out of streams into the surrounding terrestrial habitat or washed downstream into portions of streams that are occupied by nonnative predatory fish. Adults perching on surrounding vegetation may be washed into flooded streams and drown

The blackline, crimson, and oceanic Hawaiian damselflies may also be affected by temporary habitat loss associated with droughts, which are not uncommon in the Hawaiian Islands. Between 1860 and 2002, the island of Oahu was affected by 49 periods of drought (Giambelluca et al. 1991, pp. 3-4; Hawaii Commission on Water Resource Management 2009a and 2009b). These drought events often desiccate streams, irrigation ditches, and reservoirs; deplete groundwater supplies; and lead to forest and brush fires (Hawaii Commission on Water **Resource Management 2009a and** 2009b). Desiccation of streams, ditches, and reservoirs directly removes damselfly hunting and breeding habitat. Drought leads to an increase in the

number of forest and brush fires (Giambelluca *et al.* 1991, p. v), causing a reduction of native plant cover and habitat (D'Antonio and Vitousek 1992, pp. 77–79), and of plants used by the three Hawaiian damselflies for perching and hunting for prey.

Habitat Destruction and Modification by Agriculture and Urban Development

Although we are unaware of any comprehensive, site-by-site assessment of wetland loss in Hawaii, Erikson and Puttock (2006, p. 40) and Dahl (1990, p. 7) estimated that at least 12 percent of lowland to upper-elevation wetlands in Hawaii had been converted to nonwetland habitat by the 1980s. If only coastal plain (below 1,000 ft (300 m)) marshlands and wetlands are considered, it is estimated that 30 percent have been converted to agricultural and urban development (Kosaka 1990, in litt.). Historical records show these marshlands and wetlands provided habitat for many damselfly species, including the blackline, oceanic, and crimson Hawaiian damselflies (Polhemus 2007, pp. 233, 237-239; HBMP 2008).

Although filling of wetlands is regulated by permitting today, the loss of riparian or wetland habitats utilized by the blackline and crimson Hawaiian damselflies may still occur due to Oahu's population growth and development, with concurrent demands on limited developable land and water resources (Lester 2007, in litt.). The State's Commission on Water Resource Management recognized the need for a water resource protection plan, which is currently under development (Commission on Water Resource Management 2010). In addition, marshes have been slowly filled and converted to meadow habitat, as a result of sedimentation from increased storm water runoff from upslope development, the accumulation of uncontrolled growth of invasive vegetation, and blockage of downslope drainage (Wilson Okamoto & Associates, Inc. 1993, pp. 3-4, 3-5).

The threats posed by conversion of wetland and other aquatic habitat for agriculture and urban development are ongoing and are expected to continue into the future. Hawaii's population has increased almost 8 percent in the past 11 years, along with the associated increased demands on limited land and water resources (Hawaii Department of Business, Economic Development and Tourism (HDBEDT) 2012). These modified areas lack the aquatic habitat features that the blackline and crimson Hawaiian damselflies require for essential life-history needs, such as marshes, sidepools along streams, and slow sections of perennial streams, and no longer support populations of these two species. Agriculture and urban development have thus contributed to the present curtailment of the habitat of these two Hawaiian damselflies, and we have no indication that this threat is likely to be significantly ameliorated in the near future.

Habitat Destruction and Modification by Stream Diversion

Stream modifications began with the early Hawaiians who diverted water to irrigate taro (kalo, Colocasia esculenta). A taro planter's share of water was determined by the amount of labor contributed to the construction and maintenance of the ditch, and was not proportional to their acreage of flooded terraces. Water rights of others taking water from the main stream below the dam had to be respected, and no ditch was permitted to divert more than half the flow from a stream. Water was withdrawn according to a time schedule, from a few hours at a time day or night, up to 2 or 3 days, and in times of drought, the "water boss" had the right to adjust the sharing of available water to meet exigencies (Handy and Handy 1972, pp. 58-59).

The advent of plantation sugarcane cultivation led to far more extensive stream diversions, with the first diversion built in 1856 on Kauai (Wilcox 1996, p. 54). The first diversion on Oahu, Oahu Ditch, was built in 1902 (Wilcox 1996, p. 65). These systems were designed to tap water at upper elevations (above 1,000 ft (300 m)) by means of a concrete weir in the stream (Wilcox 1996, p. 54). All, or most, of the low or average flow of the stream was, and often still is, diverted into fields or reservoirs, leaving many stream channels completely dry (Takasaki et al. 1969, pp. 27-28; Harris et al. 1993, p. 12; Wilcox 1996, p. 56).

By the 1930s, water diversions had been developed on all of the main Hawaiian Islands, and by 1978, the stream flow in more than half the 366 perennial streams in Hawaii had been altered in some manner (Brasher 2003, p. 1,055). Some stream diversion systems are extensive, such as the Waiahole Ditch on Oahu, built in the early 1900s, which diverts water from 37 streams within the ranges of the blackline, crimson, and oceanic damselflies, on the windward side of Oahu to the dry plains on the leeward side of the island via a tunnel cut through the Koolau range (Stearns and Vaksvik 1935, pp. 399-403; Tvedt and Oestigaard 2006, pp. 43-44). Historically, damselflies in the genus

Megalagrion were a common component of Hawaiian streams and wetlands at elevations ranging from sea level to the summit of the Koolau range on Oahu. This loss of stream habitat may have contributed to the extirpation of populations of the three damselflies from lower elevations (Polhemus 2007, pp. 233–234, 238–239).

Habitat Destruction and Modification by Dewatering of Aquifers

In addition to the diversion of stream water and the resultant downstream dewatering, many streams on Oahu have experienced reduced or zero surface flow as a result of the dewatering of their source aquifers. Often these aquifers, which previously fed the streams, were tapped by tunneling or through the injudicious placement of wells (Gingerich and Oki 2000, p. 6; Stearns 1985, pp. 291–305). These groundwater sources were diverted for both domestic and agricultural use, and in some areas have completely depleted nearby stream and spring flows. For example, both the bore tunnels and the contour tunnel of the Waiahole Ditch system intersect perched aquifers (aquifers above the primary ground water table), which subsequently are drained to the elevation of the tunnels (Stearns and Vaksvik 1935, pp. 399-406). This has reduced stream habitat available to the blackline, crimson, and oceanic damselflies. Likewise, the boring of the Haiku tunnel on Oahu in 1940 caused a 25 percent reduction in the base flow of Kahaluu Stream, which is more than 2.5 mi (4 km) away (Takasaki et al. 1969, pp. 31–32), and has impacted available habitat for the blackline and oceanic Hawaiian damselflies (HBMP 2008). Many of these aquifers were also the sources of springs that contributed flow to Oahu's windward streams; draining of these aquifers caused many of the springs to dry up, including some more than 0.3 mi (0.5 km) away from the bore tunnels (Stearns and Vaksvik 1935, pp. 379-380).

Habitat Destruction and Modification by Vertical Wells

Surface flow of streams has also been affected by vertical wells drilled in premodern times, because the basal aquifer (lowest groundwater layer) and alluvial caprock (sediment-deposited harder rock layer) through which the lower sections of streams flow can be penetrated and hydraulically connected by wells (Gingerich and Oki 2000, p. 6; Stearns 1940, p. 88). This allows water in aquifers normally feeding the stream to be diverted elsewhere underground. Dewatering of the streams by tunneling and well placement near or in streams was a significant cause of habitat loss, and these effects continue today. Historically, for example, there was sufficient surface flow in Makaha and Nanakuli Streams on Oahu to support taro loi (artificial ponds for taro cultivation) in their lower reaches, but this flow disappeared subsequent to construction of vertical wells upstream (Devick 1995, pers. comm.). The inadvertent dewatering of streams through the penetration of their aquifers (which are normally separated from adjacent waterbearing layers by an impermeable layer), by tunneling or through placement of vertical wells, caused the loss of habitat of blackline, crimson, and oceanic Hawaiian damselflies habitat, as these species were historically known from these areas.

Habitat Destruction and Modification by Stream Channelization

Stream degradation has been particularly severe on the island of Oahu where, by 1978, 58 percent of the perennial streams and banks had been channelized (e.g., concrete lined, partially lined, or altered) to control flooding (Polhemus and Asquith 1996, p. 24; Brasher 2003, p. 1,055). These alterations have resulted in an overall 89 percent loss of the total stream length island-wide (Polhemus and Asquith 1996, p. 24; Parrish et al. 1984, p. 83). The channelization of streams creates artificial, wide-bottomed stream beds, and often results in removal of riparian vegetation, which reduces shading, increases substrate homogeneity, increases temporal water velocity (increased water flow speed during times of higher precipitation including minor and major flooding), and causes higher water temperatures (Parrish et al. 1984, p. 83; Brasher 2003, p. 1,052). Tests conducted on native aquatic species showed that the higher water temperatures in channelized streams caused stress, and sometimes death (Parrish et al. 1984, p. 83). Natural streams meander and are lined with rocks, trees, and natural debris, and during times of flooding, jump their banks. Channelized streams are straightened and often lack natural obstructions, and during times of higher precipitation or flooding, facilitate a higher water flow velocity. Hawaiian damselflies are largely absent from channelized portions of streams (Polhemus and Asquith 1996, p. 24), which has likely contributed to a reduction in the historical range of Hawaiian damselfly species. In contrast, undisturbed Hawaiian stream systems exhibit a greater amount of riffle and

pool habitat canopy closure, higher consistent flow velocity, and lower water temperatures that are characteristic of streams to which the Hawaiian damselflies, in general, are adapted (Brasher 2003, pp. 1,054– 1,057).

Channelization of streams has not been restricted to lower stream reaches. For example, there is extensive channelization of Oahu's Kalihi Stream above 1,000 ft (300 m) elevation. Extensive stream channelization on Oahu has also contributed to the loss of habitat for the blackline, crimson, and oceanic Hawaiian damselflies (Englund 1999, p. 236; Polhemus 2008, in litt.).

Stream diversion, channelization, dewatering, and vertical wells represent serious and ongoing threats to the blackline, crimson, and oceanic Hawaiian damselflies for the following reasons: (1) They reduce the amount and distribution of stream habitat available to these species; (2) they reduce stream flow, leaving lower elevation stream segments completely dry except during storms, or leaving many streams completely dry year round, thus reducing or eliminating stream habitat; and (3) they indirectly lead to an increase in water temperature that results in physiological stress and to the loss of blackline, crimson, and oceanic Hawaiian damselfly naiads. The blackline, crimson, and oceanic Hawaiian damselflies are particularly vulnerable to extinction due to such changes (i.e., stream diversion, channelization, and dewatering), a vulnerability which is exacerbated by their range and habitat constrictions and declines in their population numbers.

Habitat Destruction and Modification by Climate Change

Climate change will be a particular challenge for biodiversity because the introduction and interaction of additional stressors may push species beyond their ability to survive (Lovejoy et al. 2005, pp. 325-326). The synergistic implications of climate change and habitat fragmentation are the most threatening facet of climate change for biodiversity (Lovejoy et al. 2005, p. 4). The magnitude and intensity of the impacts of global climate change and increasing temperatures on native Hawaiian ecosystems are unknown. We are not aware of climate change studies specifically related to the seven Oahu ecosystems described in this final rule, or the 23 species that are associated with those ecosystems. Based on the best available information, climate change impacts could lead to the decline or loss of native species that comprise the communities in which the

23 species occur (Pounds et al. 1999, pp. 611-612; Still et al. 1999, p. 610; Benning *et al.* 2002, pp. 14,246 and 14,248). In addition, weather regime changes (e.g., droughts, floods) will likely result from increased annual average temperatures related to more frequent El Niño episodes in Hawaii. These changes may decrease water availability and increase the consumptive demand on Oahu's natural streams and reservoirs by Oahu's residents (Giambelluca et al. 1991, p. v). The effects of increasing temperatures on the aquatic habitat of the three damselfly species are not specifically known, but likely include the loss of aquatic habitat from reduced stream flow, evaporation of standing water, and increased water temperature (Pounds et al. 1999, pp. 611-612; Still et al. 1999, p. 610; Benning et al. 2002, pp. 14,246 and 14,248).

Oki (2004, p. 4) has noted long-term evidence of decreased precipitation and stream flow on the Hawaiian Islands, based upon evidence collected by stream gauging stations. This long-term drying trend, coupled with existing ditch diversions and periodic El Niñocaused drying events, has created a pattern of severe and persistent stream dewatering events (Polhemus 2008, in litt.). Future changes in precipitation and the forecast of those changes are highly uncertain because they depend, in part, on how the El Niño-La Niña weather cycle (a disruption of the ocean atmospheric system in the tropical Pacific having important global consequences for weather and climate) might change (Hawaii Climate Change Action Plan 1998, pp. 2–10).

The 23 species in this final rule may be especially vulnerable to extinction due to anticipated environmental changes that may result from global climate change. Environmental changes that may affect these species are expected to include habitat loss or alteration and changes in disturbance regimes (e.g., storms and hurricanes), in addition to direct physiological stress caused by increased streamwater temperatures to which the native Hawaiian damselfly fauna are not adapted. The probability of a species going extinct as a result of these factors increases when its range is restricted, habitat decreases, and population numbers decline (Intergovernmental Panel on Climate Change 2007, p. 8). The 23 species have limited environmental tolerances, limited ranges, restricted habitat requirements, small population sizes, and low numbers of individuals. Therefore, we would expect these species to be particularly vulnerable to projected

environmental impacts that may result from changes in climate, and subsequent impacts to their habitats (e.g., Pounds et al. 1999, pp. 611–612; Still et al. 1999, p. 610; Benning et al. 2002, pp. 14,246 and 14,248). We believe changes in environmental conditions that may result from climate change may impact these 23 species and their habitat, and we do not anticipate a reduction in this potential threat in the near future.

Summary of Habitat Destruction and Modification

The threats to the habitats of each of the 23 Oahu species addressed in this final rule are occurring throughout the entire range of each of the species. These threats include introduced ungulates, nonnative plants, fire, natural disasters, and climate change. In addition, the habitats of the blackline, crimson, and oceanic Hawaiian damselflies also face threats from agricultural and urban development, stream diversion, stream channelization, and stream dewatering.

The effects from ungulates are ongoing, because ungulates currently occur in six of the seven ecosystems on which these species depend. The threat posed by introduced ungulates to the species and their habitats in this final rule that occur in these six ecosystems (see Table 2) is serious, because they cause: (1) Trampling and grazing that directly impact the plant communities, which include the 19 of the 20 plant species listed in this final rule, and impact plants in riparian areas used by the blackline, crimson, and oceanic damselflies for perching, reproduction, and hunting for prey; (2) increased soil disturbance, leading to mechanical damage to individuals of the plant species listed in this final rule, and plants in riparian areas used by the damselflies for perching, reproduction, and hunting for prey; (3) creation of open, disturbed areas conducive to weedy plant invasion and establishment of alien plants from dispersed fruits and seeds, which results over time in the conversion of a community dominated by native vegetation to one dominated by nonnative vegetation (leading to all of the negative impacts associated with nonnative plants, listed below); and (4) increased watershed erosion and sedimentation, which affects aquatic habitats used by the three Hawaiian damselflies. Although plants used for perching by damselflies are not necessarily native plants, ungulate activity damages or removes all plants near the stream. Damselflies depend on plants near the stream for their daily activities, territory establishment,

reproduction, and hunting prey. These threats are expected to continue or increase without ungulate control or eradication.

Nonnative plants represent a serious and ongoing threat to the habitats of all 20 plant species being addressed in this final rule through habitat destruction and modification because they: (1) Adversely impact microhabitat by modifying the availability of light; (2) alter soil-water regimes; (3) modify nutrient cycling processes; (4) alter fire characteristics of native plant habitat, leading to incursions of fire-tolerant nonnative plant species into native habitat; and (5) outcompete, and possibly directly inhibit the growth of, native plant species. Each of these threats can convert native-dominated plant communities to nonnative plant communities (Cuddihy and Stone 1990, p. 74; Vitousek 1992, pp. 33-35). This conversion has negative impacts on, and is a threat to, the 20 plant species addressed here.

The threat from fire to the habitats of six species in this final rule (Bidens amplectens, Cyanea calycina, Doryopteris takeuchii, Korthalsella degeneri, Pleomele forbesii, and Pteralyxia macrocarpa; see Table 2) is a serious and ongoing threat, because fire damages and destroys native vegetation, including dormant seeds, seedlings, and juvenile and adult plants. Many nonnative, invasive plants, particularly fire-tolerant grasses, can outcompete native plants and inhibit their regeneration (D'Antonio and Vitousek 1992, pp. 70, 73-74; Tunison et al. 2002, p. 122). Successive fires that burn farther and farther into native habitat destroy native plants and remove habitat for native species by altering microclimatic conditions and creating conditions favorable to alien plants. The threat from fire is unpredictable but omnipresent in ecosystems that have been invaded by nonnative, fire-prone grasses.

Natural disasters, such as hurricanes, represent a serious threat to the habitats of 7 of the 20 plant species addressed in this final rule (Bidens amplectens, Cyrtandra kaulantha, C. sessilis, Melicope christophersenii, M. hiiakae, Platydesma cornuta var. cornuta, and Psychotria hexandra ssp. oahuensis), because they open the forest canopy, modify available light, and create disturbed areas that are conducive to invasion by nonnative pest plants (Asner and Goldstein 1997, p. 148; Harrington et al. 1997, pp. 346-347). The discussion under "Habitat **Destruction and Modification by** Nonnative Plants" above provides additional information related to canopy gaps, light availability, and the establishment of nonnative plant species. In addition, hurricanes are a threat to the habitats of the three Hawaiian damselfly species in this final rule, because they alter and cause direct damage to streams (Polhemus 1993, pp. 86-87). These habitat impacts can be particularly devastating to the seven plant species and three Hawaiian damselfly species addressed in this final rule, because, due to other threats, they now persist in low numbers or occur in restricted ranges, and are therefore less resilient to such disturbances. Furthermore, a particularly destructive hurricane holds the potential to drive a localized endemic species to extinction in a single event. Hurricanes pose an ongoing and ever-present threat, because they can occur at any time, although their occurrence is not predictable.

Landslides, rockfalls, and flooding adversely impact the habitats of 10 of the species in this final rule (Cyanea lanceolata, Cyrtandra kaulantha, C. sessilis, Doryopteris takeuchii, Melicope makahae, Platydesma cornuta var. decurrens, Psychotria hexandra ssp. oahuensis, and the blackline, crimson and oceanic Hawaiian damselflies) (see Table 2) by destabilizing substrates, damaging and destroying individual plants and damselflies, and altering hydrological patterns. These threats result in habitat destruction or modification, and changes to native plant and animal communities. Drought is a threat to all three damselfly species' habitats by desiccation of streams, ditches, and reservoirs, which eliminates damselfly hunting and breeding habitat. These threats are significant and have the potential to occur at any time, although their incidence is not predictable.

The threats caused by conversion of wetland and other aquatic habitat to agriculture and urban development are ongoing, expected to continue into the future, and affect each of the three damselfly's habitats. Twelve percent of the freshwater habitat in Hawaii has already been lost, and 30 percent of all coastal plain wetlands in Hawaii has been lost to agriculture and urban development (Kosaka 1990, in litt.). These modified areas no longer support populations of these Hawaiian damselflies. These threats are expected to continue in the future.

Stream diversion, channelization, and dewatering represent serious and ongoing threats to the blackline, crimson, and oceanic Hawaiian damselflies because they: (1) Reduce the amount and distribution of stream habitat; (2) reduce stream flow, which leaves lower elevation stream segments either completely dry year round, or completely dry except during storms, which reduces or eliminates stream habitat; and (3) indirectly lead to an increase in water temperature by altering the normal hydrograph patterns, which leads to the loss of damselfly naiads, due to direct physiological stress. The probability of species extinction increases when ranges are restricted, the quality and quantity of habitat decreases, and population numbers decline. Accordingly, the blackline, crimson, and oceanic Hawaiian damselflies are vulnerable to extinction due to such changes in their stream habitat.

The projected effects of global climate change and increasing temperatures on the habitats of the 23 species addressed in this final rule are related to changes in microclimatic conditions in their habitats. These changes may lead to the loss of native species due to direct physiological stress, the loss or alteration of habitat, increased competition from nonnative species, and changes in disturbance regimes (e.g., fire, storms, and hurricanes). Because the specific and cumulative effects of climate change on these 23 species are presently unknown, we are not able to determine the magnitude of this possible threat with confidence.

B. Overutilization for Commercial, Recreational, Scientific, or Educational Purposes

We are not aware of any threats to the 23 species addressed in this final rule that are attributable to overutilization for commercial, recreational, scientific, or educational purposes.

C. Disease or Predation

Disease

We are not aware of any threats to the 23 species addressed in this final rule that are attributable to disease.

Predation

Hawaii's plants and animals evolved in nearly complete isolation from continental influences. Successful colonization of these remote volcanic islands was infrequent, and many organisms never established populations. For example, Hawaii lacks any native ants or conifers, has very few bird families, and has only a single native land mammal (Loope 1998, p. 748). Defenses against mammalian herbivory, such as thorns, prickles, and production of toxins, were not needed, and the evolutionary pressure for plants to produce or maintain them was lacking. Therefore, Hawaiian plants

either lost or never developed these defenses (Carlquist 1980, p. 173). The native flora and fauna of the islands are thus particularly vulnerable to the impacts of introduced nonnative species, as discussed below.

Introduced Ungulates

In addition to the habitat impacts discussed above, ungulates pose a threat to the following 19 of the 20 plant species in this final rule by trampling and eating individual plants (this information is also presented in Table 2): Bidens amplectens (feral pigs and goats), Cyanea calycina (feral pigs and goats), C. lanceolata (feral pigs), C. purpurellifolia (feral pigs), Cyrtandra gracilis (feral pigs), C. kaulantha (feral pigs), C. sessilis (feral pigs), C. waiolani (feral pigs), Korthalsella degeneri (feral pigs and goats), Melicope christophersenii (feral pigs), M. hilakae (feral pigs), M. makahae (feral pigs and goats), Platydesma cornuta var. cornuta (feral pigs), P. cornuta var. decurrens (feral pigs and goats), Pleomele forbesii (feral pigs and goats), Psychotria hexandra ssp. oahuensis (feral pigs), Pteralyxia macrocarpa (feral pigs and goats), Tetraplasandra lydgatei (feral pigs), and Zanthoxylum oahuense (feral pigs). Predation by feral pigs and goats is also a threat to the host plants (Nestegis sandwicensis and Sapindus oahuensis) of Korthalsella degeneri. The fern Doryopteris takeuchii grows on the slopes of Diamond Head Crater, an area that is not affected by introduced ungulates.

We have direct evidence of ungulate damage to some of these species, but for many, ungulate damage is presumed based on several studies conducted in Hawaii and elsewhere. In a study conducted by Diong (1982, p. 160) on Maui, feral pigs were observed browsing on young shoots, leaves, and fronds of a wide variety of plants, of which over 75 percent were endemic species (Diong 1982, p. 160). A stomach content analysis in this study showed that 60 percent of the pigs' food source consisted of the endemic *Cibotium* (hapuu, tree fern). Pigs were observed to fell plants and remove the bark of the native plant species Clermontia, Cibotium, Coprosma, Psychotria, Scaevola, and Hedyotis, resulting in larger trees being killed over a few months of repeated feeding (Diong 1982, p. 144). A study in Texas conducted by Beach (1997, pp. 3–4) revealed that feral pigs spread disease and parasites, and that their rooting and wallowing behavior led to spoilage of watering holes and loss of soil through leaching and erosion. Rooting activities also decreased the survivability of some

plant species through disruption at root level of mature plants and seedlings (Beach 1997, pp. 3–4).

Feral goats thrive on a variety of food plants, and are instrumental in the decline of native vegetation in many areas (Cuddihy and Stone 1990, p. 64). Feral goats trample roots and seedlings, cause erosion, and promote the invasion of alien plants. They are able to forage in extremely rugged terrain and have a high reproductive capacity (Clarke and Cuddihy 1980, p. C-20; van Riper and van Riper 1982, pp. 34-35; Tomich 1986, pp. 153–156; Cuddihy and Stone 1990, p. 64). A study of goat predation on a native Acacia koa forest on the island of Hawaii has shown that grazing pressure by goats can cause the eventual extinction of Acacia koa because it is unable to reproduce (Spatz and Mueller-Dombois 1973, p. 876). If goats are maintained at constantly high numbers, mature trees will eventually die, including the root systems that support suckers and vegetative reproduction (Spatz and Mueller-Dombois 1973, p. 876). Another study at Puuwaawaa on the island of Hawaii demonstrated that prior to management actions in 1985, regeneration of endemic shrubs and trees in goat-grazed areas was almost totally lacking, contributing to the invasion of the forest understory by exotic grasses and weeds. After the removal of grazing animals in 1985, A. koa and Metrosideros spp. seedlings were observed germinating by the thousands (HDLNR 2002, p. 52). Based on a comparison of fenced and unfenced areas, it is clear that goats can devastate native ecosystems (Loope et al. 1988, p. 277). Because goats occur in 6 of the 7 described ecosystems on Oahu, the results of the studies described above suggest that goats can also alter these ecosystems and directly damage or destroy native plants.

Rats

There are three species of introduced rats on the Hawaiian Islands. The Polynesian rat (Rattus exulans) and the black rat (Rattus rattus) are primarily found in the wild, in dry to wet habitats, while the Norway rat (Rattus norvegicus) is typically found in manmade habitats such as urban areas or agricultural fields (Tomich 1986, p. 41). Studies of Polynesian rat DNA suggest that they first appeared in the Hawaiian Islands along with emigrants from the Marquesas about 400 A.D., with a second cultural interaction around 1100 A.D. (Ziegler 2002, p. 315). The black rat and the Norway rat most likely arrived in the Hawaiian Islands more recently, as stowaways on ships,

sometime in the 19th century (Atkinson and Atkinson 2000, p. 25).

Rats occur in all 7 of the Oahu ecosystems, and rat predation is a threat to 5 of the 20 plant species addressed in this final rule (Cyanea calycina, C. lanceolata, Cyrtandra gracilis, Melicope hilakae, and Psychotria hexandra ssp. oahuensis; see Table 2), which have fleshy fruits. Rats impact native plants by eating fleshy fruits, seeds, flowers, stems, leaves, roots, and other plant parts (Atkinson and Atkinson 2000, p. 23), and can seriously affect regeneration. They are known to have caused declines or even the total elimination of island plant species (Campbell and Atkinson 1999, as cited in Atkinson and Atkinson 2000, p. 24). On the Hawaiian Islands, rats may consume as much as 90 percent of the seeds produced by some trees, or, in some cases, prevent the regeneration of forest species completely (Cuddihy and Stone 1990, pp. 68-69). Plants with fleshy fruits are particularly susceptible to rat predation, including several of the plant genera in this final rule, for example, the fruits of plants in the bellflower (e.g., Cyanea spp.) and African violet (e.g., Cyrtandra spp.) families (Cuddihy and Stone 1990, pp. 67–69). Research on rats in forests in New Zealand has demonstrated that, over time, rats may alter the species composition of forested areas (Cuddihy and Stone 1990, pp. 68-69).

Nonnative Fish

Predation by nonnative fish is a serious and ongoing threat to the blackline, crimson, and oceanic Hawaiian damselflies. Crimson and blackline Hawaiian damselfly naiads occur in standing or seep-fed pools and slow-flowing sections of streams, and oceanic Hawaiian damselfly naiads occur under stones or mats of moss and algae in streams, where they are each vulnerable to predation by nonnative fish. Information suggests that Hawaiian damselflies experience limited natural predation pressure from the five species of freshwater fish native to Hawaiigobies (Gobiidae) and sleepers (Eleotridae) (Ego 1956, p. 24; Kido et al. 1993, pp. 43-44; Englund 1999, pp. 236–237). Hawaii's native fishes are benthic (bottom) feeders, and streamdwelling Hawaiian damselfly species, including the blackline, crimson, and oceanic Hawaiian damselflies, avoid these areas in preference for shallow side channels, sidepools, and higher velocity riffles and seeps (Englund 1999, pp. 236–237). While fish predation has been an important factor in the evolution of behavior in damselfly naiads in continental systems (Johnson

1991, p. 8), it can only be speculated that Hawaii's stream-dwelling damselflies adapted behaviors to avoid the benthic feeding habits of native fish species.

Over 70 species of nonnative fish have been introduced into Hawaiian freshwater habitats (Devick 1991, p. 190; Englund 1999, p. 226; Englund and Eldredge 2001, p. 32; Brasher 2003, p. 1,054; Englund 2004, p. 27; Englund et al. 2007, p. 232), with at least 51 species now established (Freshwater Fishes of Hawaii 2008). The initial introduction of nonnative fish to Hawaii began with the release of food stock species by Asian immigrants at the turn of the 20th century; however, the impact of these first introductions on Hawaiian damselflies cannot be assessed because they predated the initial collection of damselflies in Hawaii (Perkins 1899, pp. 64-76). Between 1905 and 1922, fish were introduced for biological control of mosquitoes, including the mosquito fish (Gambusia affinis), sailfin molly (Poecilia latipinna), green swordtail (Xiphophorus helleri), moonfish (Xiphophorus maculatus), and guppy (Poecilia reticulata) (Van Dine 1907, p. 9; Englund 1999, p. 225; Brasher 2003, p. 1,054). By 1935, some Oahu damselflies were becoming less common, and these introduced fish were the suspected cause of their decline (Williams 1936, p. 313; Zimmerman 1948a, p. 341). From 1946 through 1961, several additional nonnative fish were introduced for the purpose of controlling nonnative aquatic plants and for recreational fishing (Brasher 2003, p. 1,054). During the 1980s, additional nonnative fish species were established in Oahu waters, including aggressive predators and habitat-altering species such as the channel catfish (Ictalurus punctatus), cichlids (e.g., Tilapia spp.), sailfin catfish (Liposarcus multiradiatus), top minnows (Limia vittata), and piranha (Serrasalmus sp.) (Devick 1991, pp. 189, 191-192; Brasher 2003, p. 1,054; Freshwater Fishes of Hawaii 2008). Englund (1999, p. 233) found several of these species to be abundant in nearly all lowland Oahu streams and water systems, although not all were as capable of colonizing higher elevation stream reaches as the introduced poeciliid species.

Geologic or manmade barriers (e.g., waterfalls, steep gradients, dry stream midreaches, or constructed diversions) appear to prevent access by nonnative fish species to stream areas above these barriers; however, there is still a chance of facilitated fish movement. For example, in 2000, a maintenance worker introduced *Tilapia* spp. into ponds located on the grounds of Tripler Medical Army Hospital that were upslope from the remaining Oahu population of the orangeblack Hawaiian damselfly (*Megalagrion xanthomelas*) (Englund 2000, in litt.). The ponds were drained and the *Tilapia* spp. removed. The importance of their removal was underscored by the fact that a large storm caused the ponds to fill and overflow downslope into the stream supporting the damselflies soon after the *Tilapia* spp. were removed (Preston *et al.* 2007, p. 263).

Current literature indicates that the extirpation of Hawaiian damselflies from nearly all of their historical lowland habitat sites on Oahu is the result of predation by introduced nonnative fish (Moore and Gagne 1982, p. 4; Liebherr and Polhemus 1997, p. 502; Englund 1999, pp. 235–237; Brasher 2003, p. 1,055; Englund et al. 2007, p. 215; Polhemus 2007, pp. 238-239). The threats posed by continued introduction and establishment of nonnative fish in Hawaiian waters, and the possible movement of those nonnative species to new streams and other aquatic habitat, are ongoing and expected to continue into the future. This represents a serious threat to the survival of the blackline, crimson, and oceanic Hawaiian damselflies.

Bullfrogs and Toads

Currently there are three species of introduced aquatic amphibians on the Hawaiian Islands: the North American bullfrog (Rana catesbeiana), the cane toad (Bufo marinus), and the Japanese wrinkled frog (Rana rugosa). Native to the eastern United States and the Great Plains region (Moyle 1973, pp. 18–19; Bury and Whelan 1985, p. 1; Lever 2003, p. 203), the bullfrog was first introduced to Hawaii in 1899 (Bryan 1931, pp. 62-63) to help control insects, specifically the nonnative Japanese beetle (Popillia japonica), a significant pest of ornamental plants (Bryan 1931, p. 62). First released on the island of Hawaii, bullfrogs have demonstrated great success in establishing new populations on all the main islands (Bryan 1931, p. 63; Moyle 1973, p. 19; USGS 2008, p. 8). This species is flexible in both habitat and food requirements (McKeown 1996, pp. 24-27; Bury and Whelan 1984, pp. 3-7; Lever 2003, pp. 203-204), and can utilize any water source within its temperature range, 60°F to 75 °F (16 °C to 24 °C) (DesertUSA 2008). In other areas outside its native range, the bullfrog's primary impact is the elimination of native frog species (Moyle 1973, p. 21). Englund et al. (2007, pp. 215, 219) found a strong

correlation between the presence of bullfrogs and the absence of Hawaiian damselflies in their study of streams on all the main Hawaiian Islands. Bullfrogs are a threat to the blackline, crimson, and oceanic Hawaiian damselflies because they are omnivorous feeders that occur in the same habitat as the damselflies on Oahu (McKeown 1996, pp. 24–27; Bury and Whelan 1984, pp. 3–7; Lever 2003, pp. 203–204). They have a negatively correlated pattern of occurrence with native damselflies, including the three species described in this final rule (Polhemus 2012, in litt.).

The effects of possible predation by the cane toad and the Japanese wrinkled frog on the blackline, crimson, and oceanic Hawaiian damselflies are unknown at this time, and we are not able to determine the magnitude or the significance of this potential threat.

Invertebrates

Predation by nonnative invertebrate pests adversely impacts 11 of the plant species (see Table 2) through mechanical damage, destruction of plant parts, parasitism, and mortality. Those introduced invertebrate pests with the greatest effect on these native plant species include at least 14 different species of slugs (Joe 2006, p. 10), the black twig borer (Xylosandrus compactus) (Davis 1970, pp. 38-39), and the two-spotted leafhopper (Sophonia rufofascia) (Fukada 1996, pp. 1–12; Hawaii Department of Agriculture 2006). The blackline, crimson, and oceanic Hawaiian damselflies face the threat of predation by ants (Borror et al. 1989, pp. 737-741).

Slugs

Predation by nonnative slugs is a threat to individuals of the three species of Cyanea (Cyanea calycina, C. lanceolata, and C. purpurellifolia) and the four species of Cyrtandra (Cyrtandra gracilis, C. kaulantha, C. sessilis, and C. waiolani) (Joe 2006, p. 10) in this final rule. On Oahu, slugs have been reported to destroy Cyanea calycina and Cyrtandra kaulantha in the wild, and have been observed eating leaves and fruit of cultivated individuals of Cyanea (Mehrhoff 1995, in litt.; U.S. Army Garrison 2005a, pp. 3–34, 3–51). In addition, slugs have damaged individuals of Cyrtandra and individuals of other species of Cyanea in the wild (Wood et al. 2001, p. 3; Sailer and Kier 2002, p. 3; PEP 2007, p. 38; PEP 2008, pp. 23, 49, 52, 53, 57). Little is known about predation of certain rare plants by slugs; however, information in the U.S. Army's 2005 "Status Report for the Makua Implementation Plan" indicates that

slugs can be a threat to all species of Cyanea, based on laboratory studies (U.S. Army Garrison 2005a, p. 3-51). Research investigating slug herbivory and control methods shows that slug impacts on Cyanea spp. seedlings result in up to 80 percent seedling mortality (U.S. Army Garrison 2005a, p. 3-51). Direct evidence of slug predation has been reported for Cyanea calycina and Cyrtandra kaulantha in the wild (see above). Although we do not have direct evidence of slug predation on the species of Cyanea and Cyrtandra that are addressed in this final rule, research and field observations indicate that predation by slugs is a threat to species of Cyanea and Cyrtandra in the wild, the five species have similar life forms (e.g., fleshy stems, fruit, and leaves) and occur in habitat similar to that of the species that have been impacted by slug herbivory in the wild and under laboratory conditions, and slugs are found in the ecosystems on Oahu in which these plants occur. It is therefore reasonable to assume Cyanea lanceolata and C. purpurellifolia, and Cyrtandra gracilis, C. sessilis, and C. waiolani are exposed to similar impacts from slug predation.

Black Twig Borer

The black twig borer is known to infest a wide variety of common plant taxa, including native species of Melicope (Davis 1970, pp. 38-39; Extension Entomology and UH-CTAHR **Integrated Pest Management Program** 2006, p. 1). This insect pest burrows into branches, introduces a pathogenic fungus as food for its larvae, and lays its eggs (Davis 1970, p. 39). Twigs branches, and entire plants can be damaged or killed from an infestation (Extension Entomology and UH–CTAHR **Integrated Pest Management Program** 2006, p. 2). Black twig borer damage is typically observed on plants in mesic or dry forests or shrublands, and not usually observed on plants in wet forest or shrubland (Lau 2012, in litt.). On the Hawaiian Islands, the black twig borer has many hosts, disperses easily, and is probably present at most elevations up to 2,500 ft (762 m) (Howarth 1985, pp. 152–153). The black twig borer is a threat to M. makahae, the only species of Melicope that occurs in mesic forest and shrubland.

Two-Spotted Leafhopper

The effects of predation by the twospotted leafhopper have been observed on three plant species included in this final rule, *Pleomele forbesii*, *Pteralyxia macrocarpa*, and *Zanthoxylum oahuense* (HBMP 2008). This nonnative insect damages the leaves it feeds on,

typically causing chlorosis (yellowing due to disrupted chlorophyll production) to browning and death of foliage (Hawaii Department of Agriculture 2006). The damage to plants can result in the death of affected leaves or the whole plant, owing to the combined action of its feeding and oviposition behavior (Alyokhin et al. 2004, p. 1). In addition to the mechanical damage caused by the feeding process, the insect may introduce plant pathogens that lead to eventual plant death (Extension Entomology and UH-CTAHR Integrated Pest Management Program 2006, p. 2). The two-spotted leafhopper is a highly polyphagous insect (it feeds on many different types of food). Sixty-eight percent of its recorded host plant species in Hawaii are fruit, vegetable, and ornamental crops, and 22 percent are endemic plants, over half of which are rare and endangered (Alyokhin *et al.* 2004, p. 6). Its range is limited to below 4,000 ft (1,200 m) in elevation, unless there is a favorable microclimate. While there has been a dramatic reduction in the number of two-spotted leafhopper populations in the past few years (possibly due to egg parasitism), this nonnative insect has not been eradicated, and predation by this nonnative insect remains a threat (Fukada 2007, pers. comm.).

Ants

Ants are not a natural component of Hawaii's arthropod fauna, and native species evolved in the absence of predation pressure from ants. Ants can be particularly destructive predators because of their high densities, recruitment behavior, aggressiveness, and broad range of diet (Reimer 1993, pp. 14, 17–18). The threat of ant predation on the blackline, crimson, and oceanic Hawaiian damselflies is amplified by the fact that most ant species have winged reproductive adults (Borror et al. 1989, p. 738) and can quickly establish new colonies in additional suitable habitats (Staples and Cowie 2001, pp. 53-55). These attributes allow some ants to destroy otherwise geographically isolated populations of native arthropods (Nafus 1993, pp. 19, 22-23).

At least 47 species of ants are known to be established on the Hawaiian Islands (Hawaii Ants 2008, pp. 1–11), and at least four particularly aggressive species, the big-headed ant (*Pheidole megacephala*), the long-legged ant (also known as the yellow crazy ant, *Anoplolepis gracilipes*), *Solenopsis papuana* (NCN), and *Solenopsis geminata* (NCN) have severely impacted the native insect fauna, likely including

native damselflies (Zimmerman 1948b, p. 173; Reimer 1993, pp. 11-13; Hawaii Ecosystems at Risk (HEAR) database 2007). Numerous other species of ants are recognized as threats to Hawaii's native invertebrates, and an unknown number of new species are established every few years (Staples and Cowie 2001, p. 53). Due to their preference for drier habitat sites, ants are less likely to occur in high densities in the aquatic habitat currently occupied by the blackline, crimson, and oceanic Hawaiian damselflies. However, some species of ants (e.g., the long-legged ant and Solenopsis papuana) have increased their range into this aquatic habitat. Furthermore, the presence of ants in nearly all of the lower elevation, historical habitat sites may preclude the future recolonization of these areas by damselflies, including the blackline, crimson, and oceanic Hawaiian damselflies. Damselfly naiads may be particularly susceptible to ant predation while perching on vegetation or rocks when they crawl out of the water or seek a terrestrial location for their metamorphosis into the adult stage (Polhemus 2008b, in litt.). Newly emerged adult damselflies are also susceptible to predation until their wings have sufficiently hardened to permit flight (Polhemus and Asquith 1996, p. 4).

The long-legged ant appeared in Hawaii in 1952, and now occurs on Kauai, Oahu, Maui, and Hawaii (Reimer et al. 1990, p. 42). It inhabits low- to mid-elevation (less than 2,000 ft (600 m)) rocky areas of moderate rainfall (less than 100 in (250 cm) annually) (Reimer et al. 1990, p. 42). Direct observations indicate that Hawaiian arthropods are susceptible to predation by this species (Hardy 1979, p. 34; Gillespie and Reimer 1993, p. 21). Solenopsis papuana is the only abundant, aggressive ant that has invaded intact mesic and wet forest from sea level to 3,600 ft (1,100 m) on all the main Hawaiian Islands. Colonies reach dense populations, and ranges of this species are expanding on all islands (Reimer 1993, p. 14). The blackline, crimson, and oceanic Hawaiian damselflies' historical ranges were from sea level to over 2,400 ft (732 m) (Williams 1936, p. 318; Englund 1999, pp. 229–230), and they are currently found between 80 and 2,500 ft (24 and 760 m) in elevation (Polhemus 2008a, in litt.; Polhemus and Asquith 1996, p. 77; HBMP 2008). It is likely, based on our knowledge of the expanding range of Solenopsis papuana, that it threatens all populations of these three Hawaiian damselflies. The rarity or disappearance of the native blackline,

crimson, and oceanic damselfly species from historical observation sites is due to a variety of factors. While there is no documentation that conclusively ties the decrease in the blackline, crimson, and oceanic Hawaiian damselfly observations to the establishment of nonnative ants in the lowland mesic and lowland wet habitats, the presence of ants in these habitats, the knowledge that they prey on native invertebrates, and the decline of damselfly observations in some areas in these habitats suggest that nonnative ants play a role in the decline of some populations of these damselflies.

Summary of Disease or Predation

We are unaware of any information that indicates that disease is a threat to the 23 species. We consider predation and parasitism by nonnative animal species (pigs, goats, rats, fish, bullfrogs, and invertebrates) to pose an ongoing threat to 22 of the 23 species in this final rule throughout their ranges, and will continue to be so in the foreseeable future, for the following reasons:

(1) Observations and reports have documented that pigs and goats browse on and trample 19 of the 20 plant species, and browse on and trample the host plants of the other species (see Table 2); other studies demonstrate the negative impacts of ungulate browsing and trampling on native plant species of the Hawaiian islands (Spatz and Mueller-Dombois 1973, p. 874; Diong 1982, p. 160; Cuddihy and Stone 1990, p. 67).

(2) Nonnative invertebrates and rats cause mechanical damage to plants and destruction of plant parts (branches, fruits, seeds), affecting 13 of the 20 plant species in this final rule (see Table 2).

(3) The absence of Hawaiian damselflies (including the blackline, crimson, and oceanic Hawaiian damselflies) in streams and other aquatic habitat on the main Hawaiian Islands is strongly correlated with the presence of predatory nonnative fish as documented in numerous observations and reports (Englund 1999, p. 237; Englund 2004, p. 27; Englund et al. 2007, p. 215), which suggests nonnative predatory fishes eliminate native Hawaiian damselflies from these aquatic habitats. There are 70 introduced species of nonnative fishes, with over 51 species established in freshwater habitats on the Hawaiian Islands from sea level to over 3,800 ft (1,150 m) in elevation (Devick 1991, p. 190; Englund and Eldredge 2001, p. 32; Brasher 2003, p. 1,054; Englund 1999, p. 226; Englund 2004, p. 27; Englund et al. 2007, p. 232). Accordingly, predation by nonnative fishes is a serious and ongoing threat to

the blackline, crimson, and oceanic Hawaiian damselflies (see Table 2).

(4) Damselfly naiads are vulnerable to predation by ants, and the ranges of the blackline, crimson, and oceanic Hawaiian damselflies overlap that of particularly aggressive, nonnative, predatory ant species that currently occur from sea level to 2,000 ft (610 m) in elevation on all of the main Hawaiian Islands. We therefore consider the three Hawaiian damselflies in this final rule to be facing the threat of predation by these nonnative ants.

(5) Englund et al. (2007, pp. 215, 219) found a strong correlation between the presence of nonnative bullfrogs and the absence of Hawaiian damselflies. Bullfrogs are reported from riparian habitat on all the main Hawaiian Islands, except Kahoolawe and Niihau. Bullfrogs prey on almost anything that moves, including a wide variety of insects, invertebrates, and vertebrates (McKeown 1996, p. 24). The blackline, crimson, and oceanic Hawaiian damselflies also use riparian habitat, and face the threat of predation by bullfrogs.

D. The Inadequacy of Existing Regulatory Mechanisms

Feral Ungulates

Nonnative ungulates pose a major ongoing threat to 19 of the 20 plant species through destruction and degradation of terrestrial habitat, and through direct predation of 19 of the 20 plant species. The State of Hawaii provides game mammal (feral pigs and goats) hunting opportunities on 12 State-designated public hunting areas on the island of Oahu (H.A.R. sec. 13-123; HDLNR 2009, pp. 25-30). The State's management objectives for game animals range from maximizing public hunting opportunities (e.g., sustained yield) in some areas to removal by State staff, or their designees, in other areas (H.A.R. sec. 13-123). Approximately 23 percent (10,168 ac (4,119 ha)) of the critical habitat being designated in this final rule is in State hunting areas. Fifteen of the 20 plant species and all three damselfly species have populations in areas where terrestrial habitat may be managed for game enhancement, and where game populations are maintained at certain levels through public hunting (HBMP 2008; H.A.R. sec. 13-123). Public hunting areas are not fenced, and game mammals have unrestricted access to most areas across the landscape, regardless of underlying land use designation. While fences are sometimes built to provide protection from game mammals, the current number and

locations of fences are not adequate to prevent habitat destruction and degradation of the terrestrial habitat of 22 of the 23 species, and direct predation of 19 of the 20 plant species on Oahu. However, the State game animal regulations are not designed nor intended to provide habitat protection, and there are no other regulations designed to address habitat protection from ungulates.

Stream Flow

In Hawaii, instream flow is regulated by establishing standards on a streamby-stream basis. The standards currently in effect represent flow conditions in 1988, the year the administrative rules were adopted (State Water Code, Haw. Rev. Stat. 174C-71, and Administrative Rules of the State Water Code, Title 13, Chapter 169–44–49). The State of Hawaii considers all natural flowing surface water (streams, springs, and seeps) as State property (Haw. Rev. Stat. 174C), and the Hawaii Department of Land and Natural Resources (HDLNR) has management responsibility for the aquatic organisms in these waters (Haw. Rev. Stat. Annotated, 1988, Title 12; 1992 Cumulative Supplement). Accordingly, damselfly populations in all natural flowing surface waters are under jurisdiction of the State of Hawaii, regardless of property ownership. This includes the blackline, crimson, and oceanic Hawaiian damselfly populations.

The State of Hawaii manages the use of surface and ground water resources through the Commission on Water Resource Management (Water Commission), as mandated by the 1987 State Water Code (State Water Code, Haw. Rev. Stat. 174, and Administrative Rules of the State Water Code, Title 13, Chapters 168 and 169). Because of the complexity of establishing instream flow standards (IFS) for approximately 376 perennial streams, the Water Commission established interim IFS at status quo levels in 1987 (Hawaii Commission on Water Resource Management 2009c). In the Waiahole Ditch Combined Contested Hearing on Oahu (1997–2006), the Hawaii Supreme Court determined that status quo interim IFS were not adequate, and required the Water Commission to reassess the IFS for Waiahole Ditch and other streams Statewide (Case No. CCH-OA95-1). The Water Commission has been gathering information to fulfill this requirement since 2006, but no IFS recommendations have been made to date (Hawaii Commission on Water Resource Management 2009c). Therefore, we find that the existing State regulations are inadequate to

maintain stream flow year round for the different life stages of the three damselflies. These threats are ongoing and are expected to continue into the future.

Introduction of Nonnative Species

The Hawaii Department of Agriculture (HDOA) is the lead State agency in protecting Hawaii's agricultural and horticultural industries, animal and public health, natural resources, and environment from the introduction of nonnative, invasive species (HDLNR 2003, p. 3–10). While there are several State agencies (HDOA, HDLNR, Hawaii Department of Health) authorized to prevent the entry of pest species into the State, the existing regulations are inadequate for the reasons discussed in the sections below.

In 1995, a partnership, Coordinating Group on Alien Pest Species (CGAPS), comprised primarily of managers from every major Federal, State, county, and private agency and organization involved in invasive species work in Hawaii, was formed in an effort to influence policy and funding decisions, improve communication, increase collaboration, and promote public awareness (CGAPS 2009). This group facilitated the formation of the Hawaii Invasive Species Council (HISC), which was created by gubernatorial executive order in 2002, to coordinate local initiatives for the prevention and control of invasive species by providing policy level direction and planning for the State departments responsible for invasive species issues. In 2003, the governor signed into law Act 85, which conveys statutory authority to the HISC to continue to coordinate approaches among the various State and Federal agencies, and international and local initiatives, for the prevention and control of invasive species (HDLNR 2003, p. 3-15; HISC 2009a; Haw. Rev. Stat. sec. 194-2(a)). Some of the recent priorities for the HISC include interagency efforts to control nonnative species such as the plants Miconia calvescens (miconia) and Cortaderia sp. (pampas grass), coqui frogs (Eleutherodactylus coqui), and ants (HISC 2009a). Since 2009, State funding for HISC has been cut by approximately 50 percent (total funding dropped from \$4 million in FY 2009 to \$2 million in FY 2010, and to \$1.8 mil in FY 2011 (Atwood 2012, in litt.)). Congressional earmarks made up some of the shortfall in State funding in 2010 and into 2011. These funds supported ground crew staff that would have been laid off due to the shortfall in State funding (Clark 2012, in litt.). Currently (in 2012) the HISC budget is relatively flat (i.e., State

funding is equal to funding provided in 2009). Current positions supported by HISC are fewer than those supported in 2009; most of the positions have been lost through attrition and have not been refilled (Atwood 2012, in litt.; Clark 2012, in litt.). In addition, HISC funds fewer projects and provides fewer services (Atwood 2012, in litt.; Clark 2012, in litt.) than in 2009 and earlier. Many projects (such as invasive species and biological control research) that were previously funded by HISC are receiving negligible HISC funding or remain unfunded (Atwood 2012, in litt.; Clark 2012, in litt.).

Nonnative Aquatic Species-The importation of nondomestic animals, including aquatic species, is regulated by a permit system (H.A.R. sec. 4-71) managed through the Hawaii Department of Agriculture (HDOA). The HDOA's Board of Agriculture maintains lists of nondomestic animals that are prohibited from entry, animals with entry restrictions, and those that require a permit for import and possession. The HDOA requires a permit to import animals, and conditionally approves entry for individual possession, businesses (e.g., pet/resale trade, retail sales, food consumption), or institutions.

The Division of Aquatic Resources (DAR), within the State's HDLNR. manages the aquatic resources of the State (Hawaii DAR 2009) and is responsible for conserving, protecting, and enhancing the State's renewable resources of aquatic life and habitat (HDLNR 2003, p. 3-13). The release of live nonnative fish or other live nonnative aquatic life into any waters of the State is prohibited (Haw. Rev. Stat. sec. 187A-6.5). The DAR has the authority to seize, confiscate, or destroy as a public nuisance, any fish or other aquatic life found in any waters of the State and whose importation is prohibited or restricted pursuant to rules of the HDOA (section 187A-2 (4 Haw. Rev. Stat. sec. 187A-6.5)). State and Federal regulations are in place to prevent the unauthorized entry of nonnative aquatic animals such as fish and amphibians into the State of Hawaii; however, their intentional or inadvertent introduction and movement between islands and between watersheds continues, although prohibited (HDOA 2003, pp. 2-12-2-14). Further, there is insufficient regulatory capacity to adequately enforce such regulations or to provide for sufficient inspection services and monitoring, although this priority need is recognized (Cravalho and Wilson 2009, in litt.).

Nonnative Invertebrate Species— Predation by nonnative invertebrate pests (e.g., slugs, black twig borer, twospotted leafhopper) adversely impacts 13 of the plant species (see Table 2). In addition, naiads of the blackline, crimson, and oceanic Hawaiian damselflies are vulnerable to predation by ants. The decline of damselfly observations and the establishment of ants in lowland mesic and lowland wet habitats on Oahu suggest that the presence of nonnative ants in these habitats may preclude their occupancy by native damselflies (see Factor C. Disease or Predation). The prevention and control of introduction of pest species in Hawaii is the responsibility of Hawaii State government and Federal agencies, along with a few private organizations. Even though these agencies have regulations and some controls in place, the introduction and movement of nonnative invertebrate pest species between islands and from one watershed to the next continues. For example, an average of 20 new alien invertebrate species were introduced to Hawaii per year since 1970, an increase of 25 percent over the previous totals between 1930 to 1970 (The Nature Conservancy of Hawaii (TNCH) 1992, p. 8).

Nonnative Plant Species-Nonnative plants destroy and modify habitat throughout the ranges of each of the 20 plant species being addressed in this final rule. As such, they represent a serious and ongoing threat to each of these plant species. In addition, nonnative plants have been shown to outcompete native plants and convert native-dominated plant communities to nonnative plant communities (see "Habitat Destruction and Modification by Nonnative Plants," under Factor A, above). The HDOA regulates the import of plants into the State from domestic origins under Hawaii State law (Haw. Rev. Stat. Ch. 150A). While all plants require inspection upon entry into the State and must be "apparently free" of insects and diseases, not all plants require import permits. Parcels brought into the State by mail or cargo must be clearly labeled as "plant materials" or "agricultural commodities," but it is unlikely that all of these parcels are inspected or monitored prior to delivery in Hawaii. Shipments of plant material into Hawaii must be accompanied by an invoice or packing manifest listing the contents and quantities of the items imported, but, again, it is unclear if all of these shipments are inspected or monitored prior to delivery (HDOA 2009).

There are only 12 plant crops that are regulated (H.A.R. 4–70) to some degree,

including sugarcane and grasses, pineapple and other bromeliads, coffee, cruciferous vegetables, orchids, banana, passion fruit, pine, coconut, hosts of European corn borer, palms, and hosts of Caribbean fruit fly (HDLNR 2003, p. 3-11). The HDOA also maintains the State list of noxious weeds, and these plants are restricted from entry into the State except by permit from the HDOA's Plant Quarantine Branch. Although the State has general guidelines for the importation of plants, and regulations are in place regarding the plant crops mentioned above, the intentional or inadvertent introduction of nonnative plants outside the regulatory process and movement of species between islands and from one watershed to the next continues, which represents a threat to native flora for the reasons described above. In addition, government funding is inadequate to provide for sufficient inspection services and monitoring. One study concluded that the plant importation laws virtually ensure new invasive plants will be introduced via the nursery and ornamental trade, and that outreach efforts cannot keep up with the multitude of new invasive plants being distributed. The author states the only thing that wide-scale public outreach can do in this regard is to let the public know new invasive plants are still being sold, and they should ask for noninvasive or native plants instead (Martin 2007, in litt.).

On the basis of the above information, existing State and Federal regulatory mechanisms are not adequately preventing the introduction of nonnative species into Hawaii via interstate and international mechanisms, or via intrastate movement of nonnative species between islands and watersheds in Hawaii. Therefore, State and Federal regulatory mechanisms do not adequately protect the 23 species being addressed in this final rule from the threat of new introductions of nonnative species or the continued expansion of nonnative species populations on and between islands and watersheds. Nonnative species may prey upon, modify or destroy habitat of, or directly compete with one or more of the 23 species for food, space, and other necessary resources. The impacts from these introduced threats are ongoing and are expected to continue in the foreseeable future.

Summary of Inadequacy of Existing Regulatory Mechanisms

The State Water Code does not provide for permanent or minimum IFS for the protection of aquatic ecosystems

upon which the three damselfly species in this final rule depend, and does not contain a regulatory mechanism for identifying and protecting damselfly habitat (Factor A). Existing State and Federal regulatory mechanisms are not preventing the introduction into Hawaii of nonnative species or the spread of nonnative species between islands and watersheds. Habitat-altering nonnative plant species (Factor A) and predation by nonnative animal species (Factor C) pose a major ongoing threat to the 23 species being addressed in this final rule. Because these regulatory mechanisms are inadequate to maintain habitat for the 23 species, and to prevent the spread of nonnative species, the inadequacy of existing regulatory mechanisms is considered to be a serious threat, both now and in the foreseeable future. Each of the 20 plant species experiences threats from habitat degradation and loss by nonnative plants (Factor A), and 19 of the 20 plants experience threats from nonnative animals (Factor A and Factor C). The three damselflies experience threats from habitat degradation and loss by stream channeling, conversion, and similar activities (Factor A), and by predation by nonnative fish and ants (Factor C). Therefore, the inadequacy of the regulatory mechanisms to address stream flow management and nonnative species is a threat to all 23 species.

E. Other Natural or Manmade Factors Affecting Their Continued Existence

Other factors that pose threats to some or all of the 23 species include small number of populations and small population sizes, human trampling as a result of hiking and other activities, loss of host plants, and lack of regeneration. Each threat is discussed in detail below, along with identification of which species are affected by these threats.

Small Number of Populations and Individuals

Species that are endemic to single islands are inherently more vulnerable to extinction than are widespread species, because of the increased risk of genetic bottlenecks; random demographic fluctuations; climate change effects; and localized catastrophes such as hurricanes, landslides, rockfalls, drought, and disease outbreaks (Pimm et al. 1988, p. 757; Mangel and Tier 1994, p. 607). These problems are further magnified when populations are few and restricted to a very small geographic area, and when the number of individuals of each population is very small. Populations with these characteristics face an increased likelihood of stochastic

extinction, due to changes in demography, the environment, genetics, or other factors (Gilpin and Soulé 1986, pp. 24-34). Small, isolated populations often exhibit reduced levels of genetic variability, which diminishes the species' capacity to adapt and respond to environmental changes, thereby lessening the probability of long-term persistence (e.g., Barrett and Kohn 1991, p. 4; Newman and Pilson 1997, p. 361). The problems associated with small population size and vulnerability to random demographic fluctuations or natural catastrophes are further magnified by synergistic interactions with other threats, such as those discussed above (see discussions under Factors A and C).

Very small plant populations may experience reduced reproductive vigor due to ineffective pollination or inbreeding depression. This is particularly true for functionally unisexual plants like Psychotria hexandra ssp. oahuensis, in which staminate (male) and pistillate (female) flowers occur on separate individuals. Isolated individuals have difficulty achieving natural pollen exchange, which decreases the production of viable seed. Populations are also impacted by demographic stochasticity, through which populations are skewed toward either male or female individuals by chance.

The following nine plant species in this final rule face the threat of limited numbers (e.g., they total fewer than 50 individuals): Cyanea purpurellifolia, Cyrtandra gracilis, C. kaulantha, C. waiolani, Melicope hiiakae, Platydesma cornuta var. cornuta, Psychotria hexandra ssp. oahuensis, Tetraplasandra lydgatei, and Zanthoxylum oahuense. We consider small population size to be a threat to these species for the following reasons:

• Cyanea purpurellifolia is susceptible to reduced reproductive vigor due to the low number (20) of individuals remaining (DLNR 2005b, p. 2). Although facing severe threats from feral pigs, none of the individuals of this species are protected from ungulate predation (PEP 2007, p. 13).

• Cyrtandra gracilis is known only from a single occurrence, with six to eight individuals (NTBG Provenance Reports 2002, p. 1 and 2004, p. 1; PEP 2007, p. 16).

• The only known wild populations of *Cyrtandra kaulantha* and *Psychotria hexandra* ssp. *oahuensis* are facing imminent threats from flooding, landslides, and rock falls because of their locations in steep gulches (PEP 2006, p. 46, 51; PEP 2007, p. 25). • The last confirmed observation of *Cyrtandra waiolani* in the wild was approximately 40 years ago. The identification of a possible wild individual of *C. waiolani* in 2005 was confirmed not to be this species. In addition, there are no tissues, propagules, or seeds in storage or propagation that have positively been identified (PEP 2007, p. 19; Bakutis 2008, in litt.; Lau 2011, in litt.).

• Melicope hiiakae is susceptible to reduced reproductive vigor due to the lack of pollination and seed predation (NTBG Report 2007b, p. 4; Perlman, 2007b, in litt.).

 Platydesma cornuta var. cornuta individuals are widely scattered in the Koolau Mountains, and are susceptible to reduced reproductive vigor (HBMP 2008).

• The range of known occurrences of Tetraplasandra lydgatei has been reduced from 10 mi (16 km) to 2 mi (3 km) since 2005, and consists of 2 occurrences totaling 8 individuals (HBMP 2008). These individuals are showing a decline in health (Bakutis 2008, in litt.).

• Botanists have observed a steady decline in the numbers of individuals of *Zanthoxylum oahuense* over the last 9 years. This species is also susceptible to infestation by the two-spotted leafhopper (Garnett and Obata 1999, in litt.).

The blackline, crimson, and oceanic Hawalian damselflies face the threat of limited numbers. Jordan et al. (2007, p. 247) conducted a genetic and comparative phylogeography analysis (study of historical processes responsible for genetic divergence within a species) of four Hawaiian Megalagrion species, including Pacific Hawaiian damselfly (Megalagrion pacificum), an endangered species (75 FR 35990; June 24, 2010), and the orangeblack Hawaiian damselfly, a candidate species (76 FR 66370; October 26, 2011). This analysis demonstrated Megalagrion populations with low genetic diversity are at greater risk of decline and extinction than those with high genetic diversity. The authors found that low genetic diversity was observed in populations known to be bottlenecked or relictual (groups of animals or plants that exist as a remnant of a formerly widely distributed group), including Oahu and Maui populations of orangeblack Hawaiian damselfly and Pacific Hawaiian damselfly. Although this study did not include an analysis of the blackline, crimson, or oceanic Hawaiian damselflies, given that these five species have similar habitat, breeding, and life-history requirements, are related phylogenetically (same

genus), and have low numbers of populations and individuals, it is reasonable to assume that populations of the blackline, crimson, and oceanic Hawaiian damselflies (each known from fewer than 20 populations) are also at great risk of decline and extinction.

Human Trampling and Hiking

Visitors on foot, horseback, and motorbikes may pose threats to Cyanea calycina directly due to trampling and other direct damage, and indirectly due to being a source of fire ignition in areas in the southern Waianae Mountains (TNCH 1997, p. 10). Human impacts, such as trampling by hikers, has been documented as a threat to C. calycina in the northern Waianae Mountains, between Kaala and Puu Kalena summits (Wood 2001, in litt.). The largest known population of Cyrtandra sessilis is located along a popular hiking trail in the Koolau Mountains, and individuals climbing and hiking off the established trail to visit this occurrence could trample individual plants and contribute to soil compaction and erosion, preventing growth and establishment of seedlings (Bakutis 2008). This type of activity has been observed with other native species (Wood 2001, in litt.; Hawaii Rare Plant Restoration Group (HRPRG) 2007, p. 2). Doryopteris takeuchii occurs on the slopes of Diamond Head crater, a popular location for visitation by tour groups and hikers (HBMP 2008). Individuals leaving established trails will inadvertently trample plants and contribute to erosion of the steep hillsides where the plants are found. Field biologists have also observed trampling of vegetation near populations of Melicope hilakae in the Koolau Mountains, suggesting that hikers could also be a threat to this species (HRPRG 2007, p. 2).

Loss of Host Plants and Loss of Regeneration

One species in this final rule, Korthalsella degeneri, is an obligate parasite on two native host plants, Sapindus oahuensis and Nestegis sandwicensis, which occur in the dry cliff ecosystem of the Waianae Mountains of Oahu. Introduced ungulates are a threat to the host plants, because of trampling and topsoil disruption, leading to erosion and the establishment and spread of nonnative plants (Factor A). Nonnative plants are a threat to K. degeneri, because they: (1) Degrade habitat and outcompete native plants; (2) can increase the intensity, extent, and frequency of fire, converting native shrubland and forest to land dominated by alien grasses; and (3) may

cause the loss of the native host plants upon which *K. degeneri* depends (Factor A). In addition, the host plants are at risk of predation by feral ungulates, although ungulates are unlikely to be a direct threat to *K. degeneri* (Factor C), because of its parasitic characteristics.

Lack of regeneration or low levels of regeneration (i.e., reproduction) in the wild has been documented, and represents a threat to, Melicope makahae and Pleomele forbesii (HBMP 2008; Lau 2001, in litt.). There are four scattered populations of Melicope makahae in the Waianae Mountains. Two of these populations are at risk of extirpation because only one adult plant has been observed at one location and one adult plant and a single juvenile plant have been observed at the second location. There are 19 populations of P. forbesii in the Waianae Mountains, and only one population in the Koolau Mountains. The Koolau population is at risk of extirpation because of very few (if any) seedlings or juvenile plants have been observed, which indicates a lack of reproduction.

Summary of Other Natural or Manmade Factors Affecting Their Continued Existence

We consider the limited numbers of populations and few (fewer than 50) individuals to be serious and ongoing threat to at least nine plant species in this final rule because: (1) These species may experience reduced reproductive vigor due to ineffective pollination or inbreeding depression; (2) they may experience reduced levels of genetic variability, leading to diminished capacity to adapt and respond to environmental changes, thereby lessening the probability of long-term persistence; and (3) a single catastrophic event may result in extirpation of remaining populations and extinction of the species. This threat applies to the entire range of each species.

The threat to the blackline, crimson, and oceanic Hawaiian damselflies from limited numbers of populations and individuals is ongoing and is expected to continue into the future because: (1) These species may experience reduced reproductive vigor due to inbreeding depression; (2) they may experience reduced levels of genetic variability, leading to diminished capacity to adapt and respond to environmental changes, thereby lessening the probability of long-term persistence; (3) a single catastrophic event (e.g., hurricane, landslide) may result in extirpation of remaining populations and extinction of these species; and (4) species with few known locations, such as the blackline, crimson, and oceanic Hawaiian

damselflies, are less resilient to threats that might otherwise have a relatively minor impact on widely distributed species. For example, the reduced availability of breeding habitat or an increase in predation of naiads that might be absorbed in widely distributed species could result in a significant decrease in survivorship or reproduction of a species with limited distribution. The limited distribution of these three species thus magnifies the severity of the impact of the other threats discussed in this final rule.

In addition, the threat to Cyanea calycina, Cyrtandra sessilis, Doryopteris takeuchii, and Melicope hiiakae from human activities (e.g., trampling and hiking) is ongoing and expected to continue into the future because populations of all of these species are located near hiking trails or in areas used for recreational activities, and the effect of these activities could lead to injury and death of individual plants.

The threat to Korthalsella degeneri from loss of its host plants is ongoing and expected to continue into the future because threats to its host plants from nonnative plants and feral ungulates are uncontrolled. Finally, we consider the threat to Melicope makahae and Pleomele forbesii from lack of regeneration to be ongoing and expected to continue into the future because, with their small numbers in the wild, any competition from nonnative plants or habitat modification or predation by ungulates could lead to the extirpation of these species.

Determination

We have carefully assessed the best scientific and commercial information available regarding threats to each of the 23 Oahu species. We find that all of these species face threats, which are ongoing and expected to continue into the future throughout their ranges, from the present destruction and modification of their habitats, primarily from introduced ungulates and nonnative plants. Six of these species (Bidens amplectens, Cyanea calycina, Doryopteris takeuchii, Korthalsella degeneri, Pleomele forbesii, and Pteralyxia macrocarpa) experience threats from habitat destruction and modification from fire, and 14 species (Bidens amplectens, Cyanea lanceolata, Cyrtandra kaulantha, C. sessilis, Doryopteris takeuchii, Melicope christophersenii, M. hiiakae, M. makahae, Platydesma cornuta var. cornuta, P. cornuta var. decurrens, Psychotria hexandra ssp. oahuensis, and the blackline, crimson, and oceanic Hawaiian damselflies) experience threats from the destruction and

modification of their habitats from hurricanes, landslides, rockfalls, and flooding. In addition, we are concerned about the effects of projected climate change but recognize there is limited information on the exact nature of impacts from climate change (Factor A). There is a serious threat of widespread impacts of predation and herbivory on 19 of the 20 plant species (all plant species except Doryopteris takeuchii) by nonnative pigs, goats, rats, and invertebrates; and likely by predation on the three damselflies (blackline, crimson, and oceanic Hawaiian damselflies) by nonnative fish, bullfrogs, and ants (Factor C). The inadequacy of existing regulatory mechanisms (e.g., inadequate protection of habitat and inadequate protection from the introduction of nonnative species) poses a current and ongoing threat to all 23 species (Factor D). There are current and ongoing threats to nine plant species (Cyanea purpurellifolia, Cyrtandra gracilis, C. kaulantha, C. waiolani, Melicope hiiakae, Platydesma cornuta var. cornuta, Psychotria hexandra ssp. oahuensis, Tetraplasandra lydgatei, and Zanthoxylum oahuense) and the three damselflies due to factors associated with small numbers of populations and individuals (Factor E); to Melicope makahae and Pleomele forbesii from the lack of regeneration (Factor E); to Cyanea calycina, Cyrtandra sessilis, Doryopteris takeuchii, and Melicope hilakae from trampling (Factor E); and to Korthalsella degeneri from the loss of native host plants (Factor E) (see Table 2). In addition, the blackline, crimson, and oceanic Hawaiian damselflies experience threats from habitat degradation and loss due to agriculture and urban development, by stream diversion and channelization, and by dewatering of aquifers (Factor A). These threats are exacerbated by these species' inherent vulnerability to extinction from stochastic events at any time because of their endemism, small numbers of individuals and populations, and restricted habitats.

The Act defines an endangered species as any species that is "in danger of extinction throughout all or a significant portion of its range" and a threatened species as any species that is "likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range." We find that each of these endemic species is presently in danger of extinction throughout its entire range, based on the immediacy, severity, and scope of the threats described above. Based on our analysis, we have no

reason to believe that population trends for any of the species addressed in this final rule will improve, nor will the effects of current threats acting on the species be ameliorated in the foreseeable future. Therefore, on the basis of the best available scientific and commercial information, we are listing the following 23 species as endangered in accordance with section 3(6) of the Act: Bidens amplectens, Cyanea calycina, Cyanea lanceolata, Cyanea purpurellifolia, Cyrtandra gracilis, Cyrtandra kaulantha, Cyrtandra sessilis, Cyrtandra waiolani, Doryopteris takeuchii, Korthalsella degeneri,

Melicope christophersenii, Melicope hiiakae, Melicope makahae, Platydesma cornuta var. cornuta, Platydesma cornuta var. decurrens, Pleomele forbesii, Psychotria hexandra ssp. oahuensis, Pterlyxia macrocarpa, Tetraplasandra lydgatei, and Zanthoxylum oahuense; and the blackline Hawaiian damselfly, crimson Hawaiian damselfly.

Under the Act and our implementing regulations, a species may warrant listing if it is endangered or threatened throughout all or a significant portion of its range. Each of the 23 endemic Oahu species in this final rule is highly restricted in its range, and the threats occur throughout its range. Therefore, we assessed the status of each species throughout its entire range. In each case, the threats to the survival of these species occur throughout the species' entire range and are not restricted to any particular portion of that range. Accordingly, our assessment and determination applies to each species throughout its entire range.

Available Conservation Measures

Conservation measures provided to species listed as endangered or threatened under the Act include recognition, recovery actions, requirements for Federal protection, and prohibitions against certain activities. Recognition through listing results in public awareness and conservation by Federal, State, and local agencies, private organizations, and individuals. The Act encourages cooperation with the States and requires that recovery actions be carried out for all listed species. The protection measures required of Federal agencies and the prohibitions against certain activities involving listed animals and plants are discussed, in part, below.

The primary purpose of the Act is the conservation of endangered and threatened species and the ecosystems upon which they depend. The ultimate goal of such conservation efforts is the

recovery of these listed species, so that they no longer need the protective measures of the Act. Subsection 4(f) of the Act requires the Service to develop and implement recovery plans for the conservation of endangered and threatened species unless it would not promote the conservation of the species. The recovery planning process involves the identification of actions that are necessary to halt or reverse the species' decline by addressing the threats to its survival and recovery. The goal of this process is to restore listed species to a point where they are secure, selfsustaining, and functioning components of their ecosystems.

Recovery planning includes the development of a recovery outline at the same time or shortly after a species is listed, preparation of a draft and final recovery plan, and revisions to the plan as significant new information becomes available. The recovery outline guides the immediate implementation of urgent recovery actions and describes the process to be used to develop a recovery plan. The recovery plan identifies sitespecific management actions that will achieve recovery of the species, measurable criteria that determine when a species may be downlisted or delisted, and methods for monitoring recovery progress. Recovery plans also establish a framework for agencies to coordinate their recovery efforts and provide estimates of the cost of implementing recovery tasks. Recovery teams are often established to develop recovery plans. When completed, the recovery outlines, draft recovery plans, and the final recovery plans will be available from our Web site (http://www.fws.gov/ endangered), or from our Pacific Islands Fish and Wildlife Office (see ADDRESSES).

Implementation of recovery actions generally requires the participation of a broad range of partners, including other Federal agencies, States, nongovernmental organizations, businesses, and private landowners. Examples of recovery actions include habitat restoration (e.g., restoration of native vegetation), research, captive propagation and reintroduction, and outreach and education. The recovery of many listed species cannot be accomplished solely on Federal lands because their range may occur primarily or solely on non-Federal lands. To achieve recovery of these species requires cooperative conservation efforts on private and State lands.

Funding for recovery actions are available from a variety of sources, including Federal budgets, State programs, and cost share grants for non-Federal landowners, the academic community, and nongovernmental organizations. In addition, under section 6 of the Act, the State of Hawaii will be eligible for Federal funds to implement management actions that promote the protection and recovery of the 23 species in this rule. Information on our grant programs that are available to aid species recovery can be found at: http://www.fws.gov/grants.

Please let us know if you are interested in participating in recovery efforts for these listed species. Additionally, we invite you to submit any new information on these species whenever it becomes available and any information you may have for recovery planning purposes (see ADDRESSES).

Section 7(a) of the Act, as amended, requires Federal agencies to evaluate their actions with respect to any species that is proposed or listed as endangered or threatened and with respect to its critical babitat, if any is designated. **Regulations implementing this** interagency cooperation provision of the Act are codified at 50 CFR part 402. Section 7(a)(1) of the Act mandates that all Federal agencies shall utilize their authorities in furtherance of the purposes of the Act by carrying out programs for the conservation of endangered and threatened species listed under section 4 of the Act. Section 7(a)(2) of the Act requires Federal agencies to ensure that activities they authorize, fund, or carry out are not likely to jeopardize the continued existence of a listed species or result in destruction or adverse modification of critical habitat. If a Federal action may affect the continued existence of a listed species or its critical habitat, the responsible Federal agency must enter into consultation with the Service.

For the 23 plants and animals listed as endangered in this final rule, Federal agency actions that may require consultation as described in the preceding paragraph include, but are not limited to, actions within the jurisdiction of the Natural Resources Conservation Service, the U.S. Army Corps of Engineers, the U.S. Fish and Wildlife Service, and branches of the Department of Defense (DOD). Examples of these types of actions include activities funded or authorized under the Farm Bill Program, Environmental Quality Incentives Program, Ground and Surface Water Conservation Program, Clean Water Act (33 U.S.C. 1251 et seq.), Partners for Fish and Wildlife Program, and DOD construction activities related to training or other military missions.

The Act and its implementing regulations set forth a series of general prohibitions and exceptions that apply to all endangered wildlife and plants. The prohibitions, codified at 50 CFR 17.21 for wildlife and 17.61 for plants, apply. For listed wildlife species, these prohibitions, in part, make it illegal for any person subject to the jurisdiction of the United States to take (includes harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect; or to attempt any of these), import, export, ship in interstate commerce or foreign commerce in the course of commercial activity, or sell or offer for sale in interstate or foreign commerce any listed wildlife species. It is also illegal to possess, sell, deliver, carry, transport, or ship any such wildlife that has been taken illegally. In addition, for plants listed as endangered, the prohibitions include import or export, malicious damage or destruction on areas under Federal jurisdiction, and the removal, cutting, digging up, or damaging or destroying of such plants in knowing violation of any State law or regulation, including State criminal trespass law. Certain exceptions to the prohibitions apply to agents of the Service and State conservation agencies.

We may issue permits to carry out otherwise prohibited activities involving endangered or threatened wildlife and plant species under certain circumstances. Regulations governing permits are codified at 50 CFR 17.22 and 17.62 for endangered wildlife and plants, respectively. With regard to endangered wildlife, a permit must be issued for the following purposes: for scientific purposes, to enhance the propagation and survival of the species, and for incidental take in connection with otherwise lawful activities. With regard to endangered plants, a permit must be issued for the following purposes: for scientific purposes or for the enhancement of propagation or survival. Requests for copies of the regulations regarding listed species and inquiries about prohibitions and permits may be addressed to U.S. Fish and Wildlife Service, Ecological Services, Eastside Federal Complex, 911 NE. 11th Avenue, Portland, OR 97232-4181 (telephone 503–231–6158; facsimile 503-231-8243).

It is our policy, as published in the Federal Register on July 1, 1994 (59 FR 34272), to identify to the maximum extent practicable at the time a species is listed, those activities that would or would not constitute a violation of section 9 of the Act. The intent of this policy is to increase public awareness of the effect of a listing on proposed and ongoing activities within the range of a listed species. The following activities could potentially result in a violation of section 9 of the Act; this list is not comprehensive: (1) Unauthorized collecting, handling, possessing, selling, delivering, carrying, or transporting of the species, including import or export across State lines and international boundaries, except for properly documented antique specimens of these taxa at least 100 years old, as defined by section 10(h)(1) of the Act.

(2) Introduction of nonnative species that compete with or prey upon the 23 species, such as the introduction of competing, nonnative plants or animals to the State of Hawaii.

(3) The unauthorized release of biological control agents that attack any life stage of these 23 species.

(4) Unauthorized modification of the channel or water flow of any stream, or removal or destruction of emergent aquatic vegetation in any body of water in which the blackline, crimson, or oceanic Hawaiian damselfly is known to occur.

(5) Unauthorized discharge of chemicals or fill material into any waters in which the blackline, crimson, or oceanic Hawaiian damselfly is known to occur.

Questions regarding whether specific activities would constitute a violation of section 9 of the Act should be directed to the Pacific Islands Fish and Wildlife Office (see **ADDRESSES**). Requests for copies of the regulations concerning listed species and general inquiries regarding prohibitions and permits may be addressed to the U.S. Fish and Wildlife Service, Endangered Species Permits, Ecological Services, Eastside Federal Complex, 911 NE. 11th Avenue, Portland, OR 87232–4181 (telephone 503–231–6158; facsimile 503–231– 6243).

The State of Hawaii's endangered species law (State of Hawaii 2009) is automatically invoked when a species is listed, and provides supplemental protection, including prohibiting take of these species and encouraging conservation by State government agencies. Further, the State may enter into agreements with Federal agencies to administer and manage any area required for the conservation, management, enhancement, or protection of endangered species (State of Hawaii 2009). Funds for these activities could be made available under section 6 of the Act (Cooperation with the States). Thus, Federal protection afforded to listed species is reinforced and supplemented by protection under State law.

Taxonomic Name Changes for Nine Plant Species Since Listing

In 1982, we listed Euphorbia skottsbergii var. kalaeloana (47 FR

36846; August 24, 1982) as endangered following the taxonomy of Sherff (1936), although in 1959, Degener and Degener had moved this species to Chamaesyce (Chamaesyce skottsbergii var. kalaeloana). In both publications, the range for this species included only the "Ewa Plains of Oahu, Hawaii, in the vicinity of Barber's Point" (also known as Kalaeloa). In 1990, Koutnik (p. 615) placed Chamaesyce skottsbergii var. kalaeloana in synonymy with C. skottsbergii var. skottsbergii. According to Koutnik, the range for *C. skottsbergil* var. skottsbergii included southwestern Oahu (the Ewa Plains) and northwestern Molokai. However, in 2005, based on genetic analysis, Morden and Gregoritza (2005, p. 969) found that the Oahu and Molokai populations of C. skottsbergii var. skottsbergii are genetically distinct, and they supported the recognition of these two populations as distinct varieties. The authors suggested that the variety on Molokai should be recognized by the previously used variety name, C. skottsbergii var. audens. The scientific community and the Service currently accept Morden and Gregoritza's taxonomic clarification of C. skottsbergii var. skottsbergii, the range of which includes only southwestern Oahu, and C. skottsbergii var. audens, the range of which includes only Molokai.

We are aware of Steinman and Porter's 2002 (p. 473) molecular data for classification of Euphorbieae and the analysis of Bruyns et al. (2006, pp. 416-417), who found that *Chamaesyce* is nested among species of Euphorbia. Changing the names for the endangered Oahu plants Chamaesyce celastroides var. kaenana, C. deppeana, C. herbstii, C. kuwaleana, C. rockii and C. skottsbergii var. skottsbergii at 50 CFR 17.12 and at 50 CFR 17.99(j) would require a separate amendment to the CFR, not only for the Hawaiian species listings, but for all previously listed species nationwide. This amendment requires a separate notice and opportunity for public comment, and although we are unable to address this change in this final rule, we will initiate proposed taxonomic name changes for these five endangered plants in a future proposed rule.

At the time we listed Alsinidendron obovatum (56 FR 55770; October 29, 1991), A. trinerve (56 FR 55770; October 29, 1991), Hedyotis coriacea (57 FR 20772; May 15, 1992), H. degeneri (56 FR 55770; October 29, 1991), H. parvula (56 FR 55770; October 29, 1991), H. parvula (56 FR 55770; October 29, 1991), and Lipochaeta tenuifolia (56 FR 55770; October 29, 1991) as endangered, we followed the taxonomic treatment of Wagner et al. (1990, pp. 343, 501,

1,141-1,142, 1,148-1,150).

Subsequently, Wagner et al. (2005, pp. 57-63) recognized and published new combinations (new genus and species names) for Alsinidendron obovatum (now Schiedea obovata) and A. trinerve (now Schiedea trinervis) based on phylogenetic analyses. These new combinations are currently accepted by the scientific community and by the Service. Terrell et al. (2005, pp. 832, 833) published new combinations for Hedyotis coriacea (now Kadua coriacea), H. degeneri (now Kadua degeneri, and includes K. degeneri var. coprosmifolia and K. degeneri var. degeneri), and placed Hedyotis parvula in synonymy with Kadua parvula, an earlier and validly published name. Wagner and Robinson (2001, p. 554) recognized and published new

combinations for several Hawaiian species of Lipochaeta, including Lipochaeta tenuifolia (now Melanthera tenuifolia). At the time we listed Phlegmariurus nutans (59 FR 14482; March 28, 1994), we followed Ollgaard's Index of the Lycopodiaceae (1989, 135 pp.). Most recently, Palmer placed Phlogmariurus nutans in synonymy with Huperzia nutans (Palmer 2003, p. 257). We listed Mariscus pennatiformis (which included M. pennatiformis ssp. bryanii and M. pennatiformis ssp. pennatiformis) as endangered in 1994 (59 FR 56333) following the taxonomic treatment of Koyama (in Wagner et al. 1990, pp. 1,421-1,422). Since then, Strong and Wagner (1997, p. 39), and more recently Wagner and Herbst (2003, pp. 52–53), moved all Hawaiian species of Mariscus to Cyperus. The accepted

epithet for this species is *Cyperus* pennatiformis and includes *C.* pennatiformis var. bryanii and *C.* pennatiformis var. pennatiformis. The range of the species at the time of listing and now has not changed.

All of the aforementioned name changes are currently accepted by the scientific community, and, in accordance with the references cited above, we are revising the List of Endangered and Threatened Plants at 50 CFR 17.12 (see Table 3). In addition, we made editorial revisions to a limited number of units and species descriptions in 50 CFR 17.99(a)(1) and (b) (Kauai), 50 CFR 17.99(e)(1) and (f) (Maui), and 50 CFR 17.99(g) and (h) (Northwestern Hawaiian Islands) to adopt the taxonomic revisions.

TABLE 3-NAME CHANGES FOR 9 LISTED ENDANGERED HAWAIIAN PLANTS

Listing	Currently listed name	Accepted name change	
56 FR 55770 56 FR 55770 47 FR 36846 57 FR 20772 56 FR 55770 59 FR 14482 59 FR 56333	Alsinidendron obovatum Alsinidendron trinerve Chamaesyce skottsbergii var. kalaeloana Hedyotis coriacea Hedyotis degeneri Hedyotis parvula Lipochaeta tenuifolla Phlegmariurus nutans Mariscus pennatiformis	Schledea obovata. Schledea trinervis. Chamaesyce skottsbergii var. skottsbergii. Kadua coriacea. Kadua degeneri. Kadua parvula. Melanthera tenulfolla. Huperzla nutans. Cyperus pennatiformis.	

Critical Habitat

Background

Critical habitat is defined in section 3 of the Act as:

(i) The specific areas within the geographical area occupied by the species, at the time it is listed in accordance with the Act, on which are found those physical or biological features

(I) Essential to the conservation of the species and

(II) Which may require special management considerations or protection; and

(ii) Specific areas outside the geographical area occupied by the species at the time it is listed, upon a determination that such areas are essential for the conservation of the species.

Conservation, as defined under section 3 of the Act, means to use and the use of all methods and procedures that are necessary to bring an endangered or threatened species to the point at which the measures provided under the Act are no longer necessary. Such methods and procedures include, but are not limited to, all activities associated with scientific resources management, such as research, census, law enforcement, habitat acquisition and maintenance, propagation, live trapping, transplantation, and, in the extraordinary case where population pressures within a given ecosystem cannot be otherwise relieved, may include regulated taking.

Critical habitat receives protection under section 7 of the Act through the prohibition against Federal agencies carrying out, funding, or authorizing the destruction or adverse modification of critical habitat. Section 7(a)(2) requires consultation on Federal actions that may affect critical habitat. The designation of critical habitat does not affect land ownership or establish a refuge, wilderness, reserve, preserve, or other conservation area. Such designation does not allow the government or public access to private lands. Such designation does not require implementation of restoration, recovery, or enhancement measures by the landowner. Where a landowner seeks or requests Federal agency funding or authorization that may affect a listed species or critical habitat, the consultation requirements of section 7(a)(2) of the Act would apply, but even in the event of a destruction or adverse modification finding, the Federal action

agency's and the applicant's obligation is not to restore or recover the species, but to implement reasonable and prudent alternatives to avoid destruction or adverse modification of critical habitat.

For inclusion in a critical habitat designation, the habitat within the geographical area occupied by the species at the time of listing must contain physical or biological features essential to the conservation of the species, and be included only if those features may require special management considerations or protection. Critical habitat designations identify, to the extent known using the best scientific and commercial data available, habitat areas that provide for the necessary life cycle needs of the species (areas on which are found the physical or biological features essential for the conservation of the species). Under the Act and regulations at 50 CFR 424.12(e), we can designate critical habitat in areas outside the geographical area occupied by the species at the time it is listed only when we determine that those areas are essential for the conservation of the species and that designation limited to those areas occupied at the time of listing would be

inadequate to ensure the conservation of the species.

Section 4 of the Act requires that we designate critical habitat on the basis of the best scientific and commercial data available. Further, our Policy on Information Standards Under the Endangered Species Act (published in the Federal Register on July 1, 1994 (59 FR 34271)), the Information Quality Act (section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Pub. L. 106-554; H.R. 5658)), and our associated Information Quality Guidelines, provide criteria, establish procedures, and provide guidance to ensure that our decisions are based on the best scientific data available. They require our biologists, to the extent consistent with the Act and with the use of the best scientific data available, to use primary and original sources of information as the basis for recommendations to designate critical habitat.

When we are determining which areas we should designate as critical habitat, our primary source of information is generally the information developed during the listing process for the species. Additional information sources may include the recovery plan for the species, articles in peer-reviewed journals, conservation plans developed by States and counties, scientific status surveys and studies, biological assessments, or other unpublished materials and expert opinion or personal knowledge.

Habitat is often dynamic, and species may move from one area to another over time. Furthermore, we recognize that critical habitat designated at a particular point in time may not include all of the habitat areas that we may later determine to be necessary for the recovery of the species, as additional scientific information may become available in the future. For these reasons, a critical habitat designation does not signal that habitat outside the designated area is unimportant or may not be required for recovery of the species.

The information currently available on the effects of global climate change and increasing temperatures does not make sufficiently precise estimates of the location and magnitude of the effects. We are currently not aware of any climate change information specific to the habitat of any of the species addressed in this rule that would indicate what areas may become important to the species in the future. Therefore, we were unable to determine what additional areas, if any, may be appropriate to include in the critical habitat designation for these species.

Areas that are important to the conservation of the species, but are outside the critical habitat designation, will continue to be subject to conservation actions we implement under section 7(a)(1) of the Act. These areas are also subject to the regulatory protections afforded by the section 7(a)(2) jeopardy standard, as determined on the basis of the best available scientific information at the time of the agency action. Federally funded or permitted projects affecting listed species outside their designated critical habitat areas may still result in jeopardy findings in some cases. Similarly, critical habitat designations made on the basis of the best available information at the time of designation will not control the direction and substance of future recovery plans, habitat conservation plants (HCPs), section 7 consultations, or other species conservation planning efforts if new information available to these planning efforts calls for a different outcome.

Prudency Determination for 25 Oahu Species

Section 4(a)(3) of the Act, as amended, and implementing regulations (50 CFR 424.12) require that, to the maximum extent prudent and determinable, the Secretary designate critical habitat at the time a species is determined to be endangered or threatened. Our regulations at 50 CFR 424.12(a)(1) state that designation of critical habitat is not prudent when one or both of the following situations exist: (1) The species is threatened by taking or other activity, and the identification of critical habitat can be expected to increase the degree of threat to the species; or (2) the designation of critical habitat would not be beneficial to the species.

As we have discussed under the Factor B analysis, there is currently no documentation that the 23 species listed in this rule are threatened by taking or other human activity. At the time we listed the plant Achyranthes splendens var. rotundata as endangered, we found that designation of critical habitat was not prudent because this plant was threatened by taking for lei-making, and the publication of critical habitat descriptions would make this plant more vulnerable (51 FR 10518; March 26, 1986). However, we have examined the best available information. and found no information to indicate that this plant is currently threatened by overcollection for lei-making, or is otherwise used for commercial, recreational, scientific, or educational purposes. Moreover, we have no information to indicate that

identification of critical habitat is expected to initiate such a threat to any of the species addressed in this final rule. Accordingly, this designation will provide information to individuals, local and State governments, and other entities engaged in activities or longrange planning in areas essential to the conservation of these species. Conservation of these species and their essential habitat will require habitat management, protection, and restoration, which will be facilitated by knowledge of habitat locations and the physical or biological features of the habitat. Other potential benefits include: (1) Triggering consultation under section 7 of the Act in new areas for actions with a Federal nexus where it would not otherwise occur; (2) focusing conservation activities on the most essential features and areas; and (3) preventing individuals from causing inadvertent harm to the species. Based on this information, we believe critical habitat will be beneficial, and have determined the designation of critical habitat is prudent for each of the species addressed in this final rule.

The primary regulatory effect of critical habitat is the section 7(a)(2) requirement that Federal agencies refrain from taking any action that destroys or adversely modifies critical habitat. We find that the designation of critical habitat for each of the 23 species listed listing in this final rule and the endangered plants Achyranthes splendens var. rotundata and Chamaesyce skottsbergii var. skottsbergii will benefit them by serving to focus conservation efforts on the restoration and maintenance of ecosystem functions that are essential for attaining their recovery and longterm viability. In addition, the designation of critical habitat serves to inform management and conservation decisions by identifying any additional physical or biological features of the ecosystem that may be essential for the conservation of certain species, such as the availability of sufficient instream flow for the blackline, crimson, and oceanic Hawaiian damselflies, or specific host plants such as Nestegis sandwicensis and Sapindus oahuensis for Korthalsella degeneri. Therefore, because we have determined that the designation of critical habitat will not likely increase the degree of threat to the species, and may provide some measure of benefit, we find that designation of critical habitat is prudent for the following 25 species, as critical habitat will be beneficial and there is no evidence that the designation of critical habitat will result in an increased threat

by the designation of critical habitat, the legally binding duty to avoid destruction or adverse modification of critical habitat rests squarely on the Federal agency.

Civil Justice Reform—Executive Order 12988

In accordance with Executive Order 12988 (Civil Justice Reform), the Office of the Solicitor has determined that the rule does not unduly burden the judicial system and that it meets the requirements of sections 3(a) and 3(b)(2) of the Order. We have designated critical habitat in accordance with the provisions of the Act. This final rule uses standard property descriptions and identifies the features essential to the conservation of the species within the designated areas to assist the public in understanding the habitat needs of each of the 124 species considered in this rule.

Paperwork Reduction Act of 1995 (44 U.S.C. 3501 et seg.)

This rule does not contain any new collections of information that require approval by OMB under the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 *et seq.*). This rule does not impose recordkeeping or reporting requirements on State or local governments, individuals, businesses, or organizations. An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB control number.

National Environmental Policy Act (NEPA)

It is our position that, outside the jurisdiction of the Circuit Court of the United States for the Tenth Circuit, we do not need to prepare environmental analyses as defined by NEPA (42 U.S.C. 4321 et seq.) in connection with designating critical habitat under the Act. We published a notice outlining our reasons for this determination in the Federal Register on October 25, 1983 (48 FR 49244). This position was upheld by the U.S. Court of Appeals for the Ninth Circuit (Douglas County v. Babbitt, 48 F.3d 1495 (9th Cir. 1995), cert. denied 516 U.S. 1042 (1996)).

Government-to-Government Relationship With Tribes

In accordance with the President's memorandum of April 29, 1994 (Government-to-Government Relations With Native American Tribal Governments; 59 FR 22951), Executive Order 13175 (Consultation and Coordination With Indian Tribal Governments), and the Department of the Interior's manual at 512 DM 2, we readily acknowledge our responsibility to communicate meaningfully with recognized Federal Tribes on a government-to-government basis. In accordance with Secretarial Order 3206 of June 5, 1997 (American Indian Tribal **Rights**, Federal-Tribal Trust Responsibilities, and the Endangered Species Act), we readily acknowledge our responsibilities to work directly with tribes in developing programs for healthy ecosystems, to acknowledge that tribal lands are not subject to the same controls as Federal public lands, to remain sensitive to Indian culture, and to make information available to tribes.

We have determined that there are no tribal lands that are essential for the conservation of the 124 Oahu species. Therefore, we have not designated critical habitat for any of the 124 species on tribal lands.

Energy Supply, Distribution, and Use-Executive Order 13211

On May 18, 2001, the President issued an Executive Order (E.O. 13211; Actions **Concerning Regulations That** Significantly Affect Energy Supply, Distribution, or Use) on regulations that significantly affect energy supply, distribution, and use. E.O. 13211 requires agencies to prepare Statements of Energy Effects when undertaking certain actions. This rule designating critical habitat for 124 species is not a significant regulatory action under E.O. 12866, and we do not expect it to significantly affect energy supplies, distribution, or use. Regarding the proposed solar development project in Oahu—Lowland Dry—Unit 10, we do not foresee a Federal nexus for the specific project proposal, and, therefore, the designation of critical habitat is not anticipated to impact that project. Regarding the additional solar development project in Oahu—Lowland Dry—Unit 11, we support the development of a balanced conservation plan or State habitat conservation plan, which the Navy requires as a deed transfer restriction, in order to complete the proposed land transfer to the State of Hawaii. Further, we support the balanced approach planned by the Navy and the State that will allow the solar project to go forward in a portion of Oahu—Lowland Dry—Unit 11, as well as the conservation of Chamaesyce skottsbergii var. skottsbergii on the site. Therefore, since this designation of critical habitat is not anticipated to impact any of the proposed renewable energy projects, this action is not a significant energy action, and no Statement of Energy Effects is required.

Clarity of the Rule

We are required by Executive Orders 12866 and 12988 and by the Presidential Memorandum of June 1, 1998, to write all rules in plain language. This means that each rule we publish must:

(a) Be logically organized;

(b) Use the active voice to address readers directly;

(c) Use clear language rather than jargon;

(d) Be divided into short sections and sentences; and

(e) Use lists and tables wherever possible.

If you feel that we have not met these requirements, send us comments by one of the methods listed in the **ADDRESSES** section. To better help us revise the rule, your comments should be as specific as possible. For example, you should tell us the numbers of the sections or paragraphs that are unclearly written, which sections or sentences are too long, the sections where you feel lists or tables would be useful, etc.

References Cited

A complete list of all references cited in this rulemaking is available on the http://www.regulations.gov and upon request from the Pacific Islands Fish and Wildlife Office (see ADDRESSES).

Authors

The primary authors of this rulemaking are staff members of the Pacific Island Fish and Wildlife Office (see ADDRESSES).

List of Subjects in 50 CFR Part 17

Endangered and threatened species, Exports, Imports, Reporting and recordkeeping requirements, Transportation.

Regulation Promulgation

Accordingly, we amend part 17, subchapter B of chapter I, title 50 of the Code of Federal Regulations, as set forth below:

PART 17-[AMENDED]

■ 1. The authority citation for part 17 continues to read as follows:

Authority: 16 U.S.C. 1361–1407; 16 U.S.C. 1531–1544; 16 U.S.C. 4201–4245; Pub. L. 99– 625, 100 Stat. 3500; unless otherwise noted.

■ 2. Amend § 17.11(h), the List of Endangered and Threatened Wildlife by adding entries for "Damselfly, blackline Hawaiian", "Damselfly, crimson Hawaiian", and "Damselfly, oceanic Hawaiian", in alphabetical order under INSECTS, to read as follows: §17.11 Endangered and threatened () wildlife,

* * * *

100.00	1000	1000	100
(h)		- 14	R.

Species				Vertebrate					
Common name	Scientific name	Histori	c range	where en- dangered or threatened	Status	When listed	Critical habitat	Spec rule	cial ss
*	٠		٠		•				
INGEGIG									
ti i i i i i i i i i i i i i i i i i i		*			•				
Damselfly, blackline walian.	Ha- Megalagrion nigrohamatum nigrolineatum.	U.S.A. (HI)		NA	E		17.95(i)		NA
Damselfly, crimson H walian.	la- Megalagrion leptodemas.	U.S.A. (HI)	****************	NA	E		17.95(i)		NA
				5					
Damselfly, oceanic H waiian.	a- Megalagrion oceanicum	U.S.A. (HI)	*****	NA	Ε		17.95(i)		NA
*	*		•						

■ 3. Amend § 17.12(h), the List of Endangered and Threatened Plants, as follows:

a. By removing the entries for Alsinidendron obovatum, Alsinidendron trinerve, Chamaesyce skottsbergii var. kalaeloana, Hedyotis coriacea, Hedyotis degeneri, Hedyotis parvula, Lipochaeta tenuifolia, and Mariscus pennatiformis under FLOWERING PLANTS;

b. By revising the entry for Achyranthes splendens var. rotundata under FLOWERING PLANTS to read as set forth below; c. By adding entries for Bidens amplectens, Chamaesyce skottsbergii var. skottsbergii, Cyanea calycina, Cyanea lanceolata, Cyanea purpurellifolia, Cyperus pennatiformis, Cyrtandra gracilis, Cyrtandra kaulantha, Cyrtandra sessilis, Cyrtandra waiolani, Kadua coriacea, Kadua degeneri, Kadua parvula, Korthalsella degeneri, Melanthera tenuifolia, Melicope christophersenii, Melicope hiiakae, Melicope makahae, Platydesma cornuta var. cornuta, Platydesma cornuta var. decurrens, Pleomele forbesii, Psychotria hexandra ssp. oahuensis, Pteralyxia macrocarpa,

Schiedea obovata, Schiedea trinervis, Tetraplasandra lydgatei, and Zanthoxylum oahuense in alphabetical order under FLOWERING PLANTS to read as set forth below; d. By removing the entry for Phlegmariurus nutans under FERNS AND ALLIES; and

■ e. By adding entries for *Doryopteris* takeuchii and Huperzia nutans in alphabetical order under FERNS AND ALLIES to read as set forth below.

§17.12 Endangered and threatened plants.

(h) * * *

Species		6 49 - c				Critical	Special rules	
Scientific name	ame Common name Historic range Family		Family	Status	When listed	habitat		
FLOWERING PLANTS	101 (contraction)					· · · ·		
			· ·	÷	¥ ()			
Achyranthes splendens var. rotundata.	Round-leaved chaff flower.	U.S.A. (HI)	Amaranthaceae	E	220	17.99(i)	NA	
	٠	÷		•	*			
Bidens amplectens	Kookoolau	U.S.A. (HI)	Asteraceae	E	806	17.99(i)	NA	
ŭ.		•	• D 55	•				
Chamaesyce skottsbergli var. skottsbergli.	Ewa plains akoko	U.S.A. (HI)	Euphorbiaceae	E	120	17.99(l)	NA	
•	•	•		*				
Cyanea calycina	Haha	U.S.A. (HI)	Campanulaceae	Е	806	17.99(i)	NA	
N. 4			•	*	•		*	
Cyanea lanceolata	Haha	U.S.A. (HI)	Campanulaceae	E	806	17.99(i)	NA	
	•	•	*				*	
Cyanea	Haha	U.S.A. (HI)	Campanulaceae	E	806	17.99(i)	NA	

		Historic range	storic range Family		When listed	Critical	Special
Scientific name	Common name	- motorito natigu	· unity	Olaroo		habitat	rules
	*	•	4	*	٠		*
Cyperus pennatiformis.	None	U.S.A. (HI)	Cyperaceae	E	559	17.99(a)(1), (e)(1), (g), and (i)	NA
				÷			×
)yrtandra gracilis)yrtandra kaulantha	Haiwale Haiwale	U.S.A. (HI) U.S.A. (HI)	Gesneriaceae Gesneriaceae	E	806 806	17.99(i) 17.99(i)	NA NA
* Outloader assallis	1 Listanta	*	+	•	*		•
Jynanora sessilis	Hawale	U.S.A. (HI)	Gesnenaceae	E	806	17.99(i)	NA
* Ovrtaarden versielent	e Linhunia	* 11 C A /1 II)		•			
synanura walularii	Fidiwale	U.S.A. (HI)	Gesnenaceae	E	806	17.99(i)	NA
• Kadua aniana	•	*	*	•	*		
kadua conacea	Kloele	U.S.A. (HI)	Rubiaceae	E	467	17.99(e)(1) and (i)	NA
	*	·		•			•
acua degeneri	NON0	U.S.A. (HI)	Rubiaceae	E	448	17.99(i)	NA
(adua parvula	None	U.S.A. (HI)	Rubiaceae	E	448	17.99(i)	NA
* Corthologila decenari	* hkulumoo		*	•	*	47.000	
tormaisena degenen	Huiumoa	U.S.A. (HI)	VISCaceae	E	806	17.99(I)	NA
* . Jelanthera tenuifolia	* Nebo	* 11 C A /LH)	+	*: E:	*	17.00/0	*
noidritriera terruiruna	148118	U.S.A. (FII)	Asteraceae	E	448	17.99(1)	NA
* Aelicope christophersenii.	• Alani	• U.S.A. (HI)	* Rutaceae	E	806	17.99(i)	• NA
	*	*	•				
Aelicope hiiakae	Alani	U.S.A. (HI)	Rutaceae	E	806	17.99(i)	NA
•	•	•	•	*			
Aelicope makahae	Alani	U.S.A. (HI)	Rutaceae	E	806	17.99(i)	NA
Vatydesma cornuta var. cornuta.	None	U.S.A. (HI)	Rutaceae	Ē	806	17.99(i)	NA
latydesma comuta var. decurrens.	None	U.S.A. (HI)	Rutaceae	Е	806	17.99(i)	NA
			¥		*		•
Pleomele forbesii	Hala pepe	U.S.A. (HI)	Asparagaceae	Е	806	17.99(i)	NA
Psychotria hexandra ssp. oahuensis.	Kopiko	U.S.A. (HI)	Rubiaceae	E	806	17.99(i)	NA
.e							
teralyxia macrocarpa.	Kaulu	U.S.A. (HI)	Apocynaceae	Е	806	17.99(i)	NA
•	• *		¥	•	ě.		
Schiedea obovata	None	U.S.A. (HI)	Caryophyllaceae	Е	448	17.99(i)	NA
٠			÷	+			*
chiedea trinervis	None	U.S.A. (HI)	Caryophyllaceae	Е	448	17.99(i)	NA
· · · · · · · · · · · · · · · · · · ·	•		*	*	÷		
etraplasandra lydgatel.	None	U.S.A. (HI)	Araliaceae	E	806	17.99(i)	NA
. *	\$	•		•	· •		
lanthoxylum oahuansa.	Ae	U.S.A. (HI)	Rutaceae	E	806	17.99(i)	NA

Federal Register/Vol. 77, No. 181/Tuesday, September 18, 2012/Rules and Regulations 57746

Federal Register/Vol. 77, No. 181/Tuesday, September 18, 2012/Rules and Regulations 57747

Species		Lifeterie mene			.		Critical	Special	
Scientific name	Common name	Historic range	галну		Status	when hsted	habitat	ruk	88
FERNS AND ALLIES	•	£. •	•	5	•			•	
*					•	· .			
Doryopteris takeuchii	None	U.S.A. (HI)	Pteridaceae	•••••	Е	806	17.99(i)		NA
*	¥				¥.	+			
Huperzia nutans	Wawaelole	U.S.A. (HI)	Lycopodiaceae .	• • • • • • •	E	467	17.99(e)(1) and (i)		NA
¥	*		*	÷.	•				

■ 4. Amend § 17.95(i), by adding critical habitat for "Blackline Hawaiian Damselfly (*Megalagrion nigrohamatum nigrolineatum*)," "Crimson Hawaiian Damselfly (*Megalagrion leptodemas*)," and "Oceanic Hawaiian Damselfly (*Megalagrion oceanicum*)", in the same alphabetical order as these species occur in the table at § 17.11(h), to read as set forth below.

§17.95 Critical habitat—fish and wildlife.

- . . .
- (i) Insects.
- * * * *

Blackline Hawaiian Damselfly (Megalagrion nigrohamatum nigrolineatum)

(1) Critical habitat units are depicted for Honolulu County, Hawaii, on the maps below.

(2) Primary constituent elements. The primary constituent elements of critical habitat for the blackline Hawaiian damselfly (Megalogrion nigrohamatum nigrolineatum) are: (i) Elevation: Less than 3,300 ft (1,000 m).

(ii) Annual precipitation: Greater than 75 in (190 cm).

(iii) Substrate: Clays; ashbeds; deep, well-drained soils; lowland bogs.

(iv) Canopy: Antidesma, Metrosideros, Myrsine, Pisonia, Psychotria.

(v) Subcanopy: Cibotium, Claoxylon, Kadua, Melicope.

(vi) Understory: Alyxia, Cyrtandra, Dicranopteris, Diplazium, Machaerina, Microlepia.

- (vii) Perennial streams.
- (viii) Slow reaches of streams.

(ix) Pools.

(3) Existing manmade features and structures, such as buildings, roads, railroads, airports, runways, other paved areas, lawns, and other urban landscaped areas, existing trails, campgrounds and their immediate surrounding landscaped area, scenic lookouts, remote helicopter landing sites, and existing fences are not included in the critical habitat designation. Federal actions limited to those areas, therefore, would not trigger a consultation under section 7 of the Act unless they may affect the species or adjacent critical habitat.

(4) Critical habitat maps. Maps were created in GIS, with coordinates in UTM Zone 4, units in meters using North American datum of 1983 (NAD 83). The maps in this entry, as modified by any accompanying regulatory text, establish the boundaries of the critical habitat designation. The coordinates or plot points or both on which each map is based are available to the public at the Service's internet site, http:// www.fws.gov/pacificislands; at http:// www.regulations.gov at Docket No. FWS-R1-ES-2010-0043: and at the field office responsible for the designation. You may obtain field office location information by contacting one of the Service regional offices, the addresses of which are listed at 50 CFR 2.2.

(5) Index map of critical habitat units for the blackline Hawaiian damselfly (*Megalagrion nigrohamatum nigrolineatum*) follows: BILLING CODE 4310-55-P

Map 1 Megalagrion nigrohamatum nigrolineatum-Index Map

(6) Megalagrion nigrohamatum nigrolineatum—Unit 1—Lowland Wet, Honolulu County, Hawaii (790 ac; 320 ha); Megalagrion nigrohamatum nigrolineatum—Unit 2—Lowland Wet, Honolulu County, Hawaii (1,787 ac; 723 ha); and Megalagrion nigrohamatum nigrolineatum—Unit 3—Lowland Wet, Honolulu County, Hawaii (3,041 ac; 1,231 ha). These units are critical habitat for the blackline Hawaiian damselfly, Megalagrion nigrohamatum nigrolineatum. Map of Megalagrion nigrohamatum nigrolineatum—Unit 1Lowland Wet, Megalagrion nigrohamatum nigrolineatum—Unit 2— Lowland Wet, and Megalagrion nigrohamatum nigrolineatum—Unit 3— Lowland Wet follows:

Megalagrion nigrohamatum nigrolineatum Lowland Wet Unit 1, Unit 2 and Unit 3

(7) Megalagrion nigrohamatum nigrolineatum—Unit 4—Lowland Wet, Honolulu County, Hawaii (15,728 ac; 6,365 ha). This unit is critical habitat for the blackline Hawaiian damselfly, *Megalagrion nigrohamatum*

nigrolineatum. Map of Megalagrion nigrohamatum nigrolineatum—Unit 4— Lowland Wet follows:

(8) Megalagrion nigrohamatum nigrolineatum—Unit 5—Lowland Wet, Honolulu County, Hawaii (124 ac; 50 ha); Megalagrion nigrohamatum nigrolineatum—Unit 6—Lowland Wet, Honolulu County, Hawaii (123 ac; 50 ha); and Megalagrion nigrohamatum nigrolineatum—Unit 7—Lowland Wet, Honolulu County, Hawaii (53 ac; 21 ha). These units are critical habitat for the blackline Hawaiian damselfly, Megalagrion nigrohamatum nigrolineatum. Map of Megalagrion nigrohamatum nigrolineatum—Unit 5Lowland Wet, Megalagrion nigrohamatum nigrolineatum—Unit 6— Lowland Wet, and Megalagrion nigrohamatum nigrolineatum—Unit 7— Lowland Wet follows:

Megalagrion nigrohamatum nigrolineatum Lowland Wet Unit 5, Unit 6 and Unit 7

(9) Megalagrion nigrohamatum nigrolineatum—Unit 8—Lowland Wet, Honolulu County, Hawaii (75 ac; 30 ha); Megalagrion nigrohamatum nigrolineatum—Unit 9—Lowland Wet, Honolulu County, Hawaii (478 ac; 193 ha); Megalagrion nigrohamatum nigrolineatum—Unit 10—Lowland Wet, Honolulu County, Hawaii (407 ac; 165 ha); and Megalagrion nigrohamatum nigrolineatum—Unit 11—Lowland Wet, Honolulu County, Hawaii (2,507 ac; 1,014 ha). These units are critical habitat for the blackline Hawaiian damselfly, Megalagrion nigrohamatum nigrolineatum. Map of Megalagrion

nigrohamatum nigrolineatum—Unit 8— Lowland Wet, Megalagrion nigrohamatum nigrolineatum—Unit 9— Lowland Wet, Megalagrion nigrohamatum nigrolineatum—Unit 10—Lowland Wet, and Megalagrion nigrohamatum nigrolineatum—Unit 11—Lowland Wet follows:

Megalagrion nigrohamatum nigrolineatum Lowland Wet Unit 8, Unit 9, Unit 10 and Unit 11

BILLING CODE 4310-55-C

Crimson Hawaiian Damselfly (Megalagrion leptodemas)

(1) Critical habitat units are depicted for Honolulu County, Hawaii, on the maps below.

(2) Primary constituent elements.

(i) In units 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11, the primary constituent elements of critical habitat for the crimson Hawaiian damselfly are:

(A) Elevation: Less than 3,300 ft (1,000 m).

(B) Annual precipitation: Greater than 75 in (190 cm).

(C) Substrate: Clays; ashbeds; deep, well-drained soils; lowland bogs. (D) Canopy: Antidesma, Metrosideros, Myrsine, Pisonia, Psychotria.

(E) Subcanopy: Cibotium, Claoxylon, Kadua, Melicope.

(F) Understory: Alyxia, Cyrtandra, Dicranopteris, Diplazium, Machaerina, Microlepia.

(G) Perennial streams.

(H) Slow reaches of streams or ponds. (ii) In units 12, 13, and 14, the primary constituent elements of critical habitat for the crimson Hawaiian damselfly are:

(A) Elevation: Unrestricted.

(B) Annual precipitation: Greater than 75 in (190 cm).

(C) Substrate: Greater than 65 degree slope, shallow soils, weathered lava.

(D) Canopy: None.

(E) Subcanopy: Broussaisia, Cheirodendron, Leptecophylla, Metrosideros.

(F) Understory: Ferns, Bryophytes, Coprosma, Dubautia, Kadua, Peperomia.

(G) Perennial streams.

(H) Slow reaches of streams or ponds. (3) Existing manmade features and structures, such as buildings, roads, railroads, airports, runways, other paved areas, lawns, and other urban landscaped areas, existing trails, campgrounds and their immediate surrounding landscaped area, scenic lookouts, remote helicopter landing sites, and existing fences are not