<table>
<thead>
<tr>
<th>Bag</th>
<th>Material</th>
<th>Class</th>
<th>Period</th>
<th>#</th>
<th>Wt.</th>
<th>Whole</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>stone</td>
<td>adze reject</td>
<td>trad.</td>
<td>1</td>
<td>242.5</td>
<td></td>
<td>Adze reject proximal end. Sustained a transverse fracture while attempting to remove flakes across the dorsal side; length 6.0 cm; width 3.4 cm; thickness 2.2 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contact 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17 coral</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17 stone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17 stone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17 stone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18 stone</td>
</tr>
</tbody>
</table>

* trad. = Traditional, hist. = Historic, Wt. = Weight in grams.

Continued on next page.

<table>
<thead>
<tr>
<th>Bag</th>
<th>Material</th>
<th>Class</th>
<th>Period</th>
<th>#</th>
<th>Wt.</th>
<th>Whole</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>stone</td>
<td>waterworn pebble</td>
<td>trad.</td>
<td>1</td>
<td>53.8</td>
<td></td>
<td>Waterworn pebble manuport, possibly a sling stone; length 3.9 cm; width 3.3 cm; thickness 2.8 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contact 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 stone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 stone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contact 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 ceramic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 ceramic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 ceramic</td>
</tr>
</tbody>
</table>

* trad. = Traditional, hist. = Historic, Wt. = Weight in grams.

Continued on next page.
Glossary

abrupt A transition between horizons that is 0.5 cm or greater but still less than 2 cm. See also horizon.
caldera A caldera is a caldron-like volcanic feature usually formed by the collapse of land following a volcanic eruption. They are sometimes confused with volcanic craters.
Christmas berry The ornamental tree, Schinus terebinthifolius, known for its bright red berry-like fruits.
clay Fine earth particles less than 0.002 mm.
clear A transition between horizons that is 2 cm or greater but still less than 5 cm. See also horizon.
cobble Rock fragment ranging from 76 mm to less than 250 mm.
contact A period in Hawaiian history marked by the arrival of Captain James Cook in 1778 and characterized by the social changes that eventually brought about the end of traditional Hawai‘i.
context A unit of stratification associated with a natural or cultural process or event.
cortex The weathered outer rind that covers the unweathered inner material of a piece of tool stone.
diffuse A transition between horizons that is 15 cm or greater. See also horizon.
fee simple An estate of inheritance, held without limitation to a particular class of heirs; unconditional inheritance.
fire-pit A pit of varying depth, often bowl shaped at the base, usually identified by a concentration of charcoal and/or burned material in the fill, especially at the feature interface.
gradual A transition between horizons that is 5 cm or greater but still less than 15 cm. See also horizon.

Guava The historically introduced tree or shrub, Psidium guajava, common in Hawai‘i today.

Historic property According to Hawai‘i Administrative Rules §13-198-2, an “historic property” is any building, structure, object, district, area, or site, including underwater site, that is significant in the history, architecture, archaeology, or culture of the state of Hawai‘i, its communities, or the nation.

irregular A soil boundary in which the depth of undulation is greater than its width.
amanu-port A natural object found in an unnatural position, having been carried there by man.
materiel culture In rock art recording, a category which includes images that are cultural objects, e.g., spears, paddles, gourds, cape, etc.
midden A heap or stratum of refuse normally found on the site of an ancient settlement. In Hawai‘i, the term generally refers to food remains, whether or not they appear as a heap or stratum.
moderately plastic A 4 mm diameter roll of soil will support itself if held on end, but a 2 mm diameter roll of soil will not.
moderately sticky Soil adheres to both fingers, after release of pressure and stretches some on separation of fingers.

A grouping between an individual unit of stratification and a period several units of stratification make up a phase and several phases compose a period.

phasing Arrangement of the stratification into a stratigraphic sequence, and the division of the sequence into phases and periods. See also periodization.

project The archaeological investigation, including laboratory analyses and report preparation. See also undertaking.
significance A quality of a historic property that possesses integrity of location, design, setting, materials, workmanship, feeling, and association. The qualities are set out in SHPO Administrator Rule §13-275-6, Evaluations of Significance.

site The fundamental unit of archaeological investigation, a location that exhibits material evidence of past human activity.

smooth A soil boundary which is planar with few or no irregularities.

stone Rock fragment ranging from 250 mm to less than 600 mm.

stratigraphic relationships These are either of a superpositional nature, where one deposit lies above another, or they are made up of correlations, where strata or features have been cut into isolated parts by later digging.
sugarcane A grass, Saccharum officinarum, widely grown in warm regions as a source of sugar. See also kō.

unit of stratification number A number assigned to each natural and man-made layer, upstanding stratum, and vertical and horizontal feature interface. Once numbered, each unit will automatically have a set of stratigraphic relationships which must be defined and recorded.

wavy A soil boundary in which the width of undulation is greater than its depth.
Hawaiian Terms

ahu Hana, pile; altar, shrine, cairn.
ahupua'a Traditional Hawaiian land division, usually extending from the uplands to the sea.
*a'ina Land, earth.
akua God, goddess, spirit, ghost, devil, image, corpse.
*ale A bird, Falco amercicata ake, the mudhen or Hawaiian gallinule. See also *'ale kea
*ali'i Chief, chiefess, officer, ruler, monarch, peer, head man, noble, aristocrat, king, queen, commander.
aloa Love, affection, compassion, mercy, sympathy, etc.
*apapane A honey creeper, Himantoni sanguinea with crimson body and black wings and tail, found on all the main Hawaiian Islands. Its feathers occasionally were used for featherwork.
*aumakua Family or personal gods, deified ancestors who might assume the shape of animals, rocks, clouds, or plants.
*a'ua A shrub, Piper methysticum, the root of which is the source of a narcotic drink of the same name used in ceremonies, prepared formerly by chewing, later by pounding.
hale House, building, station, hall.
he'e Octopus.
hei'au Traditional Hawaiian place of worship.
he'e To count, number, compute, take a census, figure enumerate, list, include, impute; to assess, as taxes; to chant a list of names, as of genealogy; including, counting, enumeration, census, list, rate, number, figure, total, inventory; statistics.
*ili A land section, next in importance to ahupua'a, and usually a subdivision of an ahupua'a.
*i'ili Na the trees and shrubs belonging to the genus Sarzea, or sandalwood. Traditionally, it was powdered and mixed with coconut oil to make perfume for kapa.
imu Underground oven.
*ipu The gourd, Lagenaria siceraria. Kahili Tahiti, foreign land.
kahuna Priest, sorcerer, magician, wizard, minister, expert in any profession.
kala A generic name for fish in the Ulilornish genus Hana. It is generally caught in nets or with a spear. The flesh has a strong odor and is rarely eaten raw; it is often broiled or partially dried and broiled.
kalo The taro, Colocasia esculenta, was a staple food in traditional Hawai'i and all parts of the plant were used. The rootstock was baked or steamed, then eaten sliced or pounded to make poi, raw taro was also grated and mixed with coconut milk to make desserts, the leaves, leaf stems and flowers were also used in cooking. Medicinally the leaves and rootstock were used to treat many ailments. The plant was also used ritually, as bait for fish, glue, and to make dye.
kama'aina Native-born, one born in a place, host.
kapa Tapa cloth, as made from wauke or māmaki bark.
kapu Taboo, prohibition; special privilege or exemption from ordinary taboos; sacredness; prohibited, forbidden; sacred, holy, consecrated; no trespassing, keep out.
keka Prophet, seer, magician.
kawakawa Boxtor, little nun (Euthynurus yallo).
kīhāpai Small land division, smaller than a paukū; cultivated patch, garden, orchard, field, small farm.
kū Sugar cane, Saccharum officinarum, was introduced to Hawai'i by Polynesian settlers, who cultivated it widely. The stalk was chewed between meals for its sweetness, brought on long journeys to ease hunger, and eaten in times of famine; juice from the stalk was fed to nursing babies, and used as a sweetening agent in medicinal herbal concoctions; the leaves were used as the lining for houses; the leaf midrib was used for plaiting braids that were made into hats; the stem of the flower was used to make darts for a child's game.
kō'a Shrine, often consisting of circular piles of coral or stone, built along the shore or by ponds or streams, used in ceremonies as to make fish multiply; also built on bird islands, and used in ceremonies to make birds multiply.
kūa Hale A historically introduced small tree, Leucocarpus glauca.
Kona Leeward sides of the Hawaiian Islands. Name of a leeward wind.
komoiki Head man of an ahupua'a land division under the chief; land or fishing rights under control of the komoiki. See also ahupua'a.
Ko'olau Windward sides of the Hawaiian Islands.
kūkini Runner, swift messenger, as employed by old chiefs, with a premium on their speed.
kūku The candlenut tree, Aleurites moluccana, introduced to Hawai'i by Polynesian settlers. The outer husk of the fruit or nut was used to make a black dye for tapa and tattooing; sap from the fruit was used as medicine to treat thirst, and used as a purgative; the hard shell of the nut was used in lei making; the kernel of the nut was the source of an oil that was burned for illumination and also used as a wood varnish for surfboards and canoes; the kernel was also chewed and spit on rough seas to calm the ocean and baked kernels were mixed with salt and chili pepper to make a relish ('imamo); the trunk was used to make canoes and floats for fishing nets; a reddish dye was made from the bark and/or root; a gum exuded from wounded bark was used to treat tapa; the flower was mixed with sweet potato to treat thirst; the leaves were used in a poultice for swelling and infection.
kula 1. Plain, field, open country, pasture; land with no water rights. 2. School.
kuleana Right, title, property, portion, responsibility, jurisdiction, authority, interest, claim, ownership.
kūwai'a Fisherman; to catch fish.
kūlua The flower of the 'ohi'a tree, Metrosideros polymorpha, also the tree itself. See also 'Ohia lehua.
lei Garland, wreath.
mahalo Thanks, gratitude.
Māhewa The mid-nineteenth century land division responsible for the introduction of fee simple land title in Hawai'i.
malā All kinds of bananas and plantains.
māka Ancient Hawaiian game suggesting bowling.

māle A native twining shrub, *Alyxia divaricata*, used in traditional Hawaiian religion to invoke Laka, the goddess of bula. Māle sticks gummed with lime were used as part of a rig to catch birds.

māla Garden, plantation, patch, cultivated field.

māmane A native tree, *Sophora chrysophylla*, that thrives at high altitudes. Traditionally the wood was used for a variety of wood implements, and also in *hukau* sleds. The flower was used medicinally as an astringent.

manō Shark. In Hawaiian culture, there are two classes of sharks. **Manō kānakua** are sharks with human affiliations, and **manō `a`i** are wild sharks. **Manō kānakua** were revered and cared for, and were aho or `aumokuia.

mōi King, queen, sovereign, monarch, or a rank of chiefs who could succeed to the government but who were of lower rank than chiefs descended from the god Kīne.

mo`o A narrow strip of land, smaller than an `āi; 2. Lizard, reptile of any kind, dragon, serpent; water spirit.

naio A native tree, *Myoporum sandwicense*, with hard, dark, yellow-green wood. The wood was used traditionally for the main timbers of houses.

pala A native fern (*Marattia douglasii*), with a short trunk and long, long-stemmed, much divided, dark green fronds. In time of famine, the thick, starchy, hoof-shaped bases of the frond stems, which cover the short trunk, were eaten after being baked in an *imu* oven. The mucilaginous water resulting from slicing and soaking the raw stems in water was used medicinally. Pieces of the fronds mixed with *māle* lei enhanced their fragrance. The fern was also used in *hala* ceremonial.

pānini A cactus, *Opuntia megacantha*, introduced to Hawai`i in the 1800s. The Hawaiian name means "unfriendly wall." Hawaiians made a fermented drink from the fruits and also ate them raw.

pānui A land section smaller than a *mo`o*.

pālī A native grass, *Heteropogon contortus*, whose leaves were used traditionally as house thatch.

pāpī 1. Hawaiian pearl oyster, *Pinctada radiata*. In songs this is known as the *hau hāmou leo* a `Ewa, `Ewa's silent sea creature—it was believed that talking would cause a breeze to ripple the water and frighten the *pāpī*. 2. Cattle.

pā`i The Hawaiian staff of life, made from cooked taro corms, or rarely breadfruit, pounded and thinned with water.

pua`ala A native perennial herb, *Argemone glauca*, whose seeds mixed with a yellow sap from the stalk were used as a narcotic for pain relief; the sap was also used to treat warts.

pūhi Any eel.

pule *Trāye*, magic spell, incantation, blessing.

u`ula The sweet potato, *Ipomoea batatas*, introduced to Hawai`i by Polynesian settlers, was a staple food. The tuber was cooked whole and eaten or it was made into poi and mixed with coconut milk to make a dessert; it was used as bait for mackerel fishing; and to make a fermented drink called `u`ula `awa`awa. The vine made a lei which was worn by nursing mothers to ensure a good flow of milk; when dried, the

vine was also used as padding underneath floor mats. All parts of the plant were used as food for pigs. Kamapu`a was the god of the sweet potato.

uho An adult fish in the family Scaridae.

`ulu 1. Discoidal, smooth stone as used in `ulu *māka* game; 2. Breadfruit, *Artocarpus altilis*.

wahine Woman, lady, wife; sister-in-law, female cousin-in-law of a man.

wai`ake A small tree or shrub, *Broussonetia papyrifera*, whose bark was made into kapa cloth. The inner bark was used to make cordage, and the shoots were used to treat childhood diseases. The leaves, along with banana and taro leaves, were used ceremonially to wrap the bodies of ali`i after death.

weke Certain species of Malidas, sarmaleks, or goatfish, which have large scales and are usually found in reefs. Red and light-colored weke were popular as offering to the gods.

Abbreviations

ac. A unit of land area equal to 4,840 square yards (0.405 hectare).

AD *Anno Domini*, the Christian era in the Gregorian calendar, starting from the year AD 1 as the calculated year in which Christ was born.

cm The centimeter, a derived unit of length in the International System of Units, equal to 10^{-2} m. See also m.

GPS Global Positioning System, operated by the government of the United States. The term is often used for the unit used to communicate with the GPS.

in. A unit of linear measure equal to one twelfth of a foot (2.54 cm).

LCA Awards issued by the Board of Commissioners to Quiet Land Titles between 1846 and 1855 to persons who filed claims to land between 1846 and 1848.

m The meter, a base unit of length in the International System of Units, equal to the length of the path traveled by light in vacuum during a time interval of 1/299,792,458 of a second.

USCS A federal agency that provides reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect the quality of life.

Bibliography

Lands of Kalulu and Kaunolū, Lahaina District, Lāna‘i Island, TMK: (2) 4-9-002:061

Thomas S. Dye, PhD
May 9, 2018

Management Summary

Contents

1 Introduction 2
3 Research Objectives 5
4 Data Needs, Methods, and Curation 7
Glossary 8

*Prepared for Pulama Lāna‘i, 1311 Fraser Avenue, P.O. Box 639310, Lāna‘i City, HI 96763

Site 50-40-98-1980 is located in the northernmost portion of the project area in a highly eroded area along the fence line boundary with the Līnā'i Airport (fig. 1). The site comprises two components, a lithic scatter and an eroded and exposed fire-pit.

The lithic scatter is located on the crest of a slope and extends south along a drainage cut. The scatter covered an area of approximately 30 x 120 m (meter) and, at the time of survey, contained 30 or more pieces of flaked basalt. All of the artifacts that were observed and collected from the scatter came from within or adjacent to the existing drainage lines that lacked vegetation. A cowry shell fragment and several pieces of branch coral were observed within the scatter. Three adze rejects, a hammerstone, a waterworn pebble manuport, and a piece of branch coral were collected from the scatter (fig. 2). No artifacts were observed or collected in the vegetated areas around the drainage. This suggests that the artifacts have either moved downslope from a higher location as a result of water erosion or that the site has eroded and deflated over time. In either case, the artifacts would have been secondarily deposited from their original position.

Figure 2: Artifacts collected from the Context 18 lithic scatter, part of Site 50-40-98-1980: a, dorsal and ventral views of an adze reject, proximal portion; b, dorsal and ventral views of an adze reject, distal portion; c, waterworn cobble harmerstone; d, waterworn pebble manuport; e, branch coral. The three adze rejects are depicted with the dorsal side to the left and the ventral side to the right.

The second component of Site 50-40-98-1980 was an exposed fire-pit remnant located within the lithic scatter on the crest of the slope in a heavily eroded area. The fire-pit remnant was observed over an approximately 75 cm (centimeter) diameter area and had exposed charcoal and a few small cobbled-size fire-affected rocks on the surface and eroding downslope. No black plastic or tubing was observed in or around the fire-pit because the plow zone in this location had completely eroded away. It is likely that the fire-pit had originally been truncated by plows when the pineapple field was cultivated. Following documentation of the fire-pit remnant, the fire-pit was bisection twice to determine its size and stratigraphic position (fig. 3).

Figure 3: Sketch map and cross section drawing of a subsurface fire-pit recorded at Site 50-40-98-1980.

The first bisection, point A to A', cut the fire-pit in half to expose the stratigraphic section. Following bisection, a 15 cm deep profile was exposed. Context 15, a loose red silty clay loam sediment, was present from the current ground surface to a depth of 3 cm. It appears that the sediment has been deposited over the fire-pit due to water erosion along the drainage. The fire-pit, Context 15, is a band of charcoal that extends from 3 cm below surface to a depth of 12 cm. The fire-pit at this location is approximately 60 cm wide and is basin shaped. The interface between the Context 15 fire-pit and the material it had been dug into, the Context 2 dark reddish brown silty clay loam hard pan soil, was recorded as Context 17. The Context 2 soil was present to the base of excavation at 15 cm below surface.
The second bisection point, B to B', was cut just in front of the two rocks that were exposed on the surface. Following bisection, a 20 cm deep profile was exposed. Context 16, a loose red silty clay loam sediment, was present from the current ground surface to a depth of 6 cm. The sediment had been deposited over the fire-pit due to water erosion along the drainage. The fire-pit, Context 15, is a curved band of charcoal that extends from 6 cm below surface to a maximum depth of 15 cm. The fire-pit at this location is approximately 75 cm wide and is basin shaped. The interface between the Context 15 fire-pit and the material it had been dug into, the Context 2 dark reddish brown silty clay loam hard pan soil, was recorded as Context 17. The Context 2 soil was present to the base of excavation at 20 cm below surface. A charcoal sample was collected from each profile after bisection for wood taxa identification and 14C analysis.

A subsurface cultural deposit recorded as Site 50-40-98-1981 was identified in a backhoe trench (see fig. 1, p. 2). The deposit was a truncated fire-pit remnant exposed in the southern profile of the backhoe trench (fig. 4). The fire-pit was truncated by the plow zone layer, Context 1, present to a depth of 35 cm below surface. The upper portion of the fire-pit appears to have been destroyed by a plow moving east to west; charcoal from the fire-pit is scattered within the additional 65 cm to the west within the plow zone. The fire-pit remnant is approximately 65 cm in width, approximately 10 cm thick, basin shaped, and is present between 35 and 45 cm below surface. A single rounded volcanic cobble was observed within the feature. The fire-pit had been excavated into Context 2, a dark reddish brown silty clay hardpan soil present to a depth of 100 cm below surface. The interface between the fire-pit and the Context 2 soil had been excavated into was recorded as Context 13. Context 2 overlay Context 9, a dark brown silty clay loam present to the base of excavation at 150 cm below surface. A charcoal sample was collected from the Context 12 fire-pit for wood taxa and 14C analysis.

Sites 50-40-98-1980 and 50-40-98-1981 were evaluated as significant for the important information on Hawaiian history and prehistory that they have yielded.

3 Research Objectives

The inventory survey report recommended that a data recovery plan be developed and implemented prior to construction activities at the Mihi Basin 200 Acre Industrial Development. It was further recommended that the data recovery plan develop research questions that can be addressed with data yielded by the following laboratory tasks:

The research objectives of the proposed data recovery investigations include gathering data on the history of vegetation change on Lāna‘i in an effort to date two periods of change, one during the traditional Hawaiian period and the other in the mid-nineteenth century when sheep and goats were raised on the island [7], and to complete paired technological and geochemical sourcing analyses of the lithic artifacts to determine the reduction sequences for the flaked stone implements, and to determine likely source locations for the fine-grained, tool-grade basalt items in the collection.

The first period of vegetation change that will be investigated involves a process identified as landscape transport [28], whereby the Polynesian settlers of Hawaii established about 28 species of plants brought to the islands from a homeland in the southern hemisphere [13321 ff.]. This process has been dated to the mid-fifteenth century on O‘ahu Island [6], but thus far has proved elusive on Lāna‘i, where native plants dominate firewood throughout the traditional Hawaiian sequence. For example, wood charcoal from five taxa introduced by Polynesians, including cf. kau, ipu, kukui, 'ula, and 'ohi'a 'oi was recovered in small amounts (generally less than 1% by weight) in all of the charcoal collections from two sites at the coastal settlement in Kaunōlū [1]. Based on the available dating evidence, the charcoal collections at Kaunōlū date to late in the traditional Hawaiian sequence and to the early historic period. The lowland native forest at Kaunōlū appears to have persisted into the early historic period. Similarly, several collections of firewood charcoal from Hulopo'e insecurely dated to the period AD 1300-1850 were composed
primarily of native woods, with trace occurrences of 'ulu and kū [10]. Two fire-pits dated to around the early historic period on the coast at Mānele [4] were fueled almost entirely with native species, and a somewhat earlier fire-pit located inland near Lāna‘i City [4] also yielded predominantly native firewood.

The second period of vegetation change in the mid-nineteenth century involves the nearly complete collapse of the native lowland dry forest with the introduction of grazing herbivores [7]. To date, fire-pits from this recent period have not been identified and investigated on Lāna‘i.

The research objective for the stone artifacts is to characterize the chain of manufacture for the tools fashioned from fine-grained basalt. An attempt will be made to identify the source of the rock with non-destructive geochemical analysis, describe the reduction sequence along the lines set out by Weisler [12], and classify tools according to function [11], as far as possible given the fragmentary materials.

4 Data Needs, Methods, and Curation

The data needed to address the research objectives were collected during the inventory survey and comprise the contents of the two fire-pits and the secondarily deposited stone artifacts collected at Site 50-40-98-1980.

Field methods are not required to acquire and analyze the data because exhaustive field collections were made during the archaeological inventory survey.

The laboratory work needed to carry out the data recovery investigation includes carbon identification at the Wood Identification Laboratory of the Hawaiian Archæological Research Institute, accelerator mass spectrometry (AMS) dating of one specimen of short-lived wood charcoal from each of the fire-pits, and calibration of the laboratory results with the BCal software package [9]. Non-destructive geochemical characterization with EDXRF will be carried out at the University of Hawaii at Hilo [9].

The procedure for depositing collections after the conclusion of the proposed data recovery project involves returning them to Lāna‘i Island, where they will be redeposited at the Lāna‘i Culture and Heritage Center, where they are currently stored.

The plan does not call for additional fieldwork. Thus, we do not anticipate that human burials will be disturbed.

Sites 50-40-98-1980 and 50-40-98-1981 were not determined significant under criterion "e," which pertains to sites that have "an important value to the native Hawaiian people or to another ethnic group of the state due to associations with cultural practices once carried out, or still carried out, at the property or due to associations with traditional beliefs, events or oral accounts—these associations being important to the group’s history and cultural identity" (§13-275-6[b][6]). Thus, there is no requirement that consultation with members of the relevant ethnic group be undertaken during preparation of this plan.

Glossary

clay Fine earth particles less than 0.002 mm.
cobble Rock fragment ranging from 76 mm to less than 250 mm.
fire-pit A pit of varying depth, often bowl shaped at the base, usually identified by a concentration of charcoal and/or burned material in the fill, especially at the feature interface.
mano A natural object found in an unnatural position, having been carried there by man.
project The archaeological investigation, including laboratory analyses and report preparation.

Hawaiian Terms

ipu The gourd, Lagenaria siceraria.
kū Sugar cane, Saccharum officinarum, was introduced to Hawai‘i by Polynesian settlers, who cultivated it widely. The stalk was chewed between meals for its sweetness, brought on long journeys to ease hunger, and eaten in times of famine; juice from the stalk was fed to nursing babies, and used as a sweetening agent in medicinal herbal concoctions; the leaves were used as thatching for houses; the leaf midrib was used for plaiting braids that were made into hats; the stem of the flower was used to make darts for a child’s game.
kou A native tree, Cordia subcordata, with a wood prized for its grain and ease of carving. It was used for carving a wide variety of objects from platters to images of gods; the leaves were made into dye and the flowers were also used in lei making.
kukui The candlenut tree, Aleurites moluccana, introduced to Hawai‘i by Polynesian settlers. The outer husk of the fruit or nut was used to make a black dye for tapa and tattooing; sap from the fruit was used as medicine to treat thrush, and used as a purgative; the hard shell of the nut was used in lei making; the kernel of the nut was the source of an oil that was burned for illumination and also used as a wood varnish for surfboards and canoes; the kernel was also chewed and spit on rough seas to calm the ocean and baked kernels were mixed with salt and chili pepper to make a relish (‘iamona); the trunk was used to make canoes and floats for fishing nets, a reddish dye was made from the bark and/or root, a gum exuded from wounded bark was used to treat tapa; the flower was mixed with sweet potato to treat thrush; the leaves were used in a poultice for swelling and infection.
‘ohi‘a ‘awe The mountain apple, Syzygium malaccense, a forest tree growing up to 50 ft. high. Traditionally the trunk of the tree was used for house posts and rafters, enclosures for temples, and to carve idols. The fruit was eaten raw or dried. The bark was made into an infusion to remedy sore throats and a dye was also made from the bark.
‘ulu 1. Discoidal, smooth stone used as in ‘ulu maika game; 2. Breadfruit, Artocarpus altilis.
Bibliography

Lands of Kalulu and Kaunolū, Lahaina District, Lāna‘i Island,
TMK: (2) 4–9–002:081

Thomas S. Dye, PhD
February 28, 2019

Management Summary

At the request of Punalu‘u Lāna‘i, and pursuant to Hawaii Administrative Rules 613–278–4, T. S. Dye & Colleagues, Archaeologists has prepared an archaeological data recovery report for Sites 50–40–98–1980 and 50–40–98–1981, located at Kalulu and Kaunolū, Lahaina District, Lāna‘i Island. It reports on technological analyses set out in a data recovery plan, including EDXRF analysis of lithic materials collected from Site 50–40–98–1980, and charcoal identification and dating of the fire-pits at Sites 50–40–98–1980 and 50–40–98–1981. The lithic analysis indicates the secondary deposition of adze rejects collected from the surface of the Miki Basin 200 Acre Industrial Development project were flake blanks likely derived from outcrops on Lāna‘i Island and that rock from sources on Maui and Hawaii’s Islands is absent from the collection. The wood charcoal and dating analyses from the two fire-pits at Sites 50–40–98–1980 and 50–40–98–1981 further strengthen the conclusion based on earlier analyses that native forests on Lāna‘i persisted into the nineteenth century, with little evidence for cultivation of canoe plants brought to the islands by Polynesian settlers. The persistence of native forest plants on Lāna‘i contrasts with the Waimānalo Plain on O‘ahu Island, where by the mid-fifteenth century, canoe plants were typical sources of firewood.

*Prepared for Punalu‘u Lāna‘i, 311 Fraser Avenue, P.O. Box 680310, Lāna‘i City, HI 96763.
1 Introduction

At the request of Pulama Lāna‘i, T. S. Dye & Colleagues, Archaeologists has prepared an archaeological data recovery report for Sites 50–40–98–1980 and 50–40–98–1981 located in the lands of Kaulua and Kaunolu, Lahaina District, Lāna‘i Island (fig. 1). Sites 50–40–98–1980 and 50–40–98–1981 were identified and inventoried by DVI/To et al. [10]. A data recovery plan was drawn up a few years later [12] that followed recommendations set out in the inventory survey report [10]. The data recovery plan proposed to carry out technological analyses of lithic materials collected from Site 50–40–98–1980, and charcoal identification and dating of the fire-pits at Sites 50–40–98–1980 and 50–40–98–1981. This document presents the results of these technological analyses and interprets them in the context of research questions having to do with the tempo of vegetation change on Lāna‘i’s following discovery and settlement by Polynesians, and characteristics of lithic technology to determine reduction sequences for certain tools and likely source locations for the fine-grained, tool-grade basalt used to fashion the tools.

2 Data Recovery Plan

The data recovery plan for the project is summarized in the following sections.

Site 50–40–98–1980 is located in the northeastern portion of the project area in a highly eroded area along the fence line boundary with the Lāna‘i Airport (fig. 1). The site comprises two components, a lithic scatter and an eroded and exposed fire-pit. The lithic scatter is located on the crest of a slope and extends south along a drainage cut. The scatter covered an area of approximately 30 x 120 m (meter) and, at the time of survey, contained 30 or more pieces of flaked basalt. All of the artifacts that were observed and collected from the scatter came from within or adjacent to the existing drainage areas that lacked vegetation. A cowry shell fragment and several pieces of branch coral were observed within the scatter. Three adze rejects, a hammerstone, a worn pebble mSTOPP, and a piece of branch coral were collected from the scatter (fig. 2). No artifacts were observed or collected in the vegetated areas around the drainage. This suggests that the artifacts have either moved downslope from a higher location as a result of water erosion or that the site has eroded and deflated over time. In either case, the artifacts would have been secondarily deposited from their original position.

The second component of Site 50–40–98–1980 was an exposed fire-pit remnant located within the lithic scatter on the crest of the slope in a heavily eroded area. The fire-pit remnant was observed over an approximately 75 cm (centimeter) diameter area and had exposed charcoal and a few small cobble-size fire-affected rocks on the surface and eroding downslope (fig. 3). No black plastic or tubing was observed in or around the fire-pit because the plow zone in this location had completely eroded away. It is likely

Figure 1: Location of Sites 50–40–98–1980 and 50–40–98–1981 and the Miki Basin 200 Acre Industrial Development on a USGS quadrangle map.

that the fire-pit had originally been truncated by plows when the pineapple field was cultivated. Following documentation of the fire-pit remnant, the fire-pit was bisected twice to determine its size and stratigraphic position (fig. 4). The first bisection point, A to A', cut the fire-pit in half to expose the stratigraphic section. Following bisection, a 15 cm deep profile was exposed. Context 16, a loose red silty clay loam sediment, was present from the current ground surface to a depth of 3 cm, but it appears that the sediment has been deposited over the fire-pit due to water erosion along the drainage. The fire-pit, Context 15, is a band of charcoal that extends from 3 cm below surface to a depth of 12 cm. The fire-pit at this location is approximately 60 cm wide and is basin shaped. The interface between the Context 15 fire-pit and the material it had been dug into, the Context 2 dark reddish brown silty clay loam hard pan soil, was recorded as Context 17. The Context 2 soil was present to the base of excavation at 15 cm below surface.

The second bisection point, B to B', was cut just in front of the two rocks that were exposed on the surface. Following bisection, a 20 cm deep profile was exposed. Context 16, a loose red silty clay loam sediment, was present from the current ground surface to a depth of 6 cm. The sediment has been deposited over the fire-pit due to water erosion along the drainage. The fire-pit, Context 15, is a curved band of charcoal that extends from 6 cm below surface to a maximum depth of 15 cm. The fire-pit at this location is
approximately 75 cm wide and is basin shaped. The interface between the Context 15 fire-pit and the material it had been dug into, the Context 2 dark reddish brown silty clay loam hardpan soil, was recorded as Context 17. The Context 2 soil was present to the base of excavation at 20 cm below surface. A charcoal sample was collected from each profile after bisecting for wood taxa identification and 14C analysis.

A subsurface cultural deposit recorded as Site 50–40–98–1981 was identified in a backhoe trench (see fig. 1, p. 4). The deposit was a truncated fire-pit remnant exposed in the southern profile of the backhoe trench (fig. 6). The fire-pit was truncated by the plow zone layer, Context 1, present to a depth of 35 cm below surface. The upper portion of the fire-pit appears to have been destroyed by a plow moving east to west; charcoal from the fire-pit is scattered an additional 65 cm to the west within the plow zone. The fire-pit remnant is approximately 65 cm in width, approximately 10 cm thick, basin shaped, and is present between 35 and 45 cm below surface. A single rounded volcanic cobbles was observed within the feature. The fire-pit had been excavated into Context 2, a dark reddish brown silty clay hardpan soil present to a depth of 100 cm below surface. The interface between the fire-pit and the Context 2 soil it had been excavated into was recorded as Context 13. Context 2 overlay Context 9, a dark brown silty clay loam present to the base of excavation at 150 cm below surface. A charcoal sample was collected from the Context 12 fire-pit for wood taxa and 14C analysis.

Sites 50–40–98–1980 and 50–40–98–1981 were evaluated as significant for the important information on Hawaiian history and prehistory that they have yielded [1096].

2.2 Research Objectives

The inventory survey report recommended that a data recovery plan be developed and implemented prior to construction activities at the Miki Basin 200 Acre Industrial Development. It was further recommended that the data recovery plan develop research questions that can be addressed with data yielded by the following laboratory tasks:

Site 50–40–98–1980 Analysis of the wood charcoal collected from the Context 15 fire-pit for taxa identification and 14C dating. Analysis of artifacts collected from the Context 18 lithic scatter to further investigate the tool-making reduction sequence utilized on the island [28].
Figure 4: Sketch map and cross section drawing of a subsurface fire-pit recorded at Site 50-40-98-1980.

Figure 5: Stratigraphic profile of the bisected fire-pit at Site 50-40-98-1980. The scale is marked in 10 cm increments.

The research objectives of the proposed data recovery investigations include gathering data on the history of vegetation change on Līna`i in an effort to date two periods of change, one during the traditional Hawaiian period and the other in the mid-nineteenth century when sheep and goats were raised on the island [18], and to complete paired technological and geochemical sourcing analyses of the lithic artifacts to determine the reduction sequences for the flaked stone implements, and to determine likely source locations for the fine-grained, tool-grade basalt items in the collection.

The first period of vegetation change that will be investigated involves a process identified as landscape transport [3; 50], whereby the Polynesian settlers of Hawai`i established about 28 species of plants brought to the islands from a homeland in the southern hemisphere [29,31 ff.]. This process has been dated to the mid-fifteenth century on O`ahu Island [16], but thus far has proved elusive on Līna`i, where native plants dominate firewood throughout the traditional Hawaiian sequence. For example, wood charcoal from five taxa introduced by Polynesians, including cf. kiawe, i`i, kukui, `alii, and `ōhi`a, was recovered in small amounts (generally less than 1% by weight) in all of the charcoal collections from two sites at the coastal settlement in Kaunoa [2]. Based on the available dating evidence, the charcoal collections at Kaunoa date to late in the
Figure 7: Stratigraphic profile of truncated fire-pit at Site 50-40-98-1981. Note the black plastic mulch in the deposit above the fire-pit. The scale is marked in 10 cm increments.

Traditional Hawaiian sequence and to the early historic period. The lowland native forest at Kaunolu appears to have persisted into the early historic period. Similarly, several collections of firewood charcoal from Hulopoe insecurely dated to the period AD 1300–1850 were composed primarily of native woods, with trace occurrences of 'ulu and kā [25]. Two fire-pits dated to around the early historic period on the coast at Mānele [13] were fueled almost entirely with native species, and a somewhat earlier fire-pit located inland near Lāna'i City [14] also yielded predominantly native firewood.

The second period of vegetation change in the mid-nineteenth century involves the nearly complete collapse of the native lowland dry forest with the introduction of grazing herbivores [19]. To date, fire-pits from this recent period have not been identified and investigated on Lāna'i.

The research objective for the stone artifacts is to characterize the chain opérateure for the tools fashioned from fine-grained basalt. An attempt will be made to identify the source of the rock with non-destructive geochemical analysis, describe the reduction sequence along the lines set out by Weisler [28], and classify tools according to function [36], as far as possible given the fragmentary materials.

2.3 Data Needs, Methods, and Curation

The data needed to address the research objectives were collected during the inventory survey and comprise the contents of the two fire-pits and the secondary depositions stone artifacts collected at Site 50-40-98-1980.

Field methods are not required to acquire and analyze the data because exhaustive field collections were made during the archaeological inventory survey, when both fire-pits were fully excavated and diagnostic materials were collected from the secondary deposit of stone artifacts at Site 50-40-98-1980.

The laboratory work needed to carry out the data recovery investigation includes: i) identification of charcoal from the fire-pits at Sites 50-40-98-1980 and 50-40-98-1981 at the Wood Identification Laboratory of International Archaeological Research Institute (WIDL); ii) accelerator mass spectrometry (AMS) dating of a single specimen of identified, short-lived, wood charcoal from each of the fire-pits; iii) calibration of the AMS dating results with the BCal software package [6] to estimate calendar dates for construction and use of the fire-pits; (iv) non-destructive geochemical characterization of the lithic materials collected from Site 50-40-98-1980 with the EDXRF facility at the University of Hawai'i at Hilo [22]; and (v) observation of the adze rejects collected from Site 50-40-98-1980 to determine the primary reduction technique used in their manufacture.

The procedure for depositing collections after the conclusion of the data recovery project returned them to the Lāna'i Culture and Heritage Center, where they were previously stored.

The plan does not call for additional fieldwork. Thus, we do not anticipate that human burials will be disinterred.

Sites 50-40-98-1980 and 50-40-98-1981 were determined significant under criterion "d" for the important information on Hawaiian history and prehistory they have yielded [10/96]. Sites 50-40-98-1980 and 50-40-98-1981 were not determined significant for criterion "c", which pertains to sites that have "an important value to the native Hawaiian people or to another ethnic group of the state due to associations with cultural practices once carried out, or still carried out, at the property or due to associations with traditional beliefs, events or oral accounts—those associations being important to the group's history and cultural identity" (513–275-6(6)b(5)). Thus, there is no requirement that consultation with members of a relevant ethnic group be undertaken during preparation of this plan.

3 Laboratory Results

This section presents the laboratory results for the wood charcoal identification and dating, the EDXRF geochemical sourcing analysis, and observations on the reduction sequence for six adze rejects.
3.1 Wood Charcoal Identification and Dating

Wood charcoal collected from the fire-pits at Site 50-40-98-1980 and 50-40-98-1981 was submitted to the Wood Identification Laboratory at International Archaeological Research Institute for identification. Vouchers from the report filed by Jim Huebert follow.

The freshly fractured transverse, tangential, and radial facets of selected charcoal fragments were examined with an epiluminated microscope at magnifications of 50-500x. Taxonomic identifications were made by comparing observed anatomical characteristics with those of woods in the IARII reference collection. Vouchers associated with this collection have been verified and archived at the Department of Botany, University of Hawai‘i at Mānoa. Other published references, including books, journal articles, technical documents, and wood atlases, were also consulted.

Samples were first reviewed under low-power magnification to assess the quality of the material and determine the range of plant parts present. For the most part, the charcoal in these samples is firm and somewhat hard. A selection of 40 fragments of various sizes and shapes were selected from each sample for taxonomic identification. These samples were not taxonomically diverse and consist mainly of various shapes and size classes of ‘ulena and ‘aloku (tables 1 and 2). All are genera that include native Hawaiian hardwood species.

Table 1: Taxa identified from charcoal

<table>
<thead>
<tr>
<th>Family</th>
<th>Taxon</th>
<th>Name</th>
<th>Habitat</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chenopodiaceae</td>
<td>Chenopodium ambrosia</td>
<td>‘ulena</td>
<td>shrub-tree</td>
<td>native</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Euphorbia sp.</td>
<td>‘aloku</td>
<td>shrub-tree</td>
<td>native</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Senna sp.</td>
<td>kūlima‘u</td>
<td>tree</td>
<td>?</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Sida cf. fallax</td>
<td>‘ulena</td>
<td>shrub</td>
<td>native</td>
</tr>
</tbody>
</table>

Table 2: Charcoal identifications

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Part</th>
<th>Count</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chenopodium ambrosia</td>
<td>twig</td>
<td>33</td>
<td>16.6</td>
</tr>
<tr>
<td>Sida cf. fallax</td>
<td>twig</td>
<td>4</td>
<td>1.84</td>
</tr>
<tr>
<td>Euphorbia sp.</td>
<td>twig</td>
<td>1</td>
<td>0.27</td>
</tr>
<tr>
<td>Senna sp.</td>
<td>twig</td>
<td>37</td>
<td>3.5</td>
</tr>
<tr>
<td>Senna sp.</td>
<td>wood</td>
<td>3</td>
<td>0.61</td>
</tr>
</tbody>
</table>

It should be noted that while the native plant *S. fallax* is fairly common in archaeological assemblages there are several post-Contact Sida, including *S. humblotii* or Cuba jute, which was introduced in the 1839s [23:table 2], and other species that are naturalized throughout the islands. In a brief review of several new wood specimens, I noted the wood anatomy of these taxa might not be diagnostic to species pending further investigation. *Senna* and *Euphorbia* also have naturalized species that are present today on Lāna‘i and should be considered similarly.

Please note the following:
- Indeterminate material was too fragile or warped for taxonomic identification, or derives from small woody herb or fern stems which are rarely diagnostic. I have noted whether material was wood, herbaceous stems, grass stems, etc., whenever possible.
- It is best to choose one fragment of material for radiocarbon dating to eliminate the chance of dating more than one event [4].

Descriptions of the wood anatomy observed in the samples follow.

Euphorbia sp. Smaller diameter vessels, most under 50 µm, round, often chained radially 2–4 (sometimes up to 8–10); fibers medium thickness, fine pits noted on fiber walls; rays uniseriate and sometimes up to 3–4 seriate with occasional radial canals, cells square or upright; intervessel pits oval, alternate, medium-sized.

Sida cf. fallax Vessels small, under 40 µm diameter, solitary or by 2–3(4); surrounded by thin sleeve of axial parenchyma; fiber walls very thick; rays narrow, bi-seriate, extremely tall in TLS; intervessel pits alternate, 3–4 µm.

Senna sp. Vessels approximately 100 µm diameter, solitary or in groups or chains of 2–3, fibers medium thickness; axial parenchyma wavy, surrounded by vessels and intergrades with fibers; rays uniseriate occasionally widening to 2 cells, a few rays 5—23 cells wide, short to medium heights, mostly of square and some upright cells; intervessel pits 4–5 µm and also wider, alternate; vessel-ray pits similar.

Two pieces of wood charcoal were selected for 14C dating. A piece of *‘ulena* charcoal from the fire-pit at Site 50-40-98-1981 and a piece of *‘aloku* charcoal from the fire-pit at Site 50-40-99-1980 were submitted to Beta-Analytic for AMS dating (appendix A). Beta-Analytic assigned the *‘ulena* charcoal to Beta-510703 and reported a conventional radiocarbon age of 140 ± 30 yr. Beta-Analytic assigned the *‘aloku* charcoal to Beta-510704 and reported a conventional radiocarbon age of 170 ± 30 yr. The calibrated age estimates indicate both fire-pits were used near the end of traditional Hawaiian times (fig. 9).

3.2 Reduction Sequence

Compared to island groups elsewhere in Polynesia, Hawaiian adzes are remarkably uniform. An early study that compared Hawaiian adzes with adze collections from the Society Islands, Marquesas, and Easter Island in East Polynesia remarked that “tolo place in East Polynesian exhibits such a steadfast adherence to one form of adze as Hawai‘i”
An early study of adze-making at the sources along the bench at the east end of the Pillawai Basin observed that "the corners of bowlers have been broken off to furnish the cores" [18:77]. Subsequently, a more detailed study determined that adze blanks at Kapohaku were flakes, rather than cobbles or tabular pieces of rock [28], consistent with Emory’s observation. The striking platform of the flake became the poll of the finished adze and the flake termination became the cutting edge. Adzes made from flakes: i) are typically thin relative to width and exhibit a cross section that is rectangular, rather than square [8]; ii) often increase in width toward the cutting edge; and iii) are relatively lightweight. These characteristics identify tools suited for everyday household and gardening tasks, rather than felling large trees in old growth forests.

The six adze rejects collected during the inventory survey (fig. 9) are flakes that can be classified as adze blanks because they each lack the three bi-directionally flaked edges that identify a preform [7]. They appear to have been rejected early in the reduction sequence.

![Figure 9: Dorsal (left) and ventral (right) surfaces of secondarily deposited adze rejects included in the EDXRF analysis: a, Lāna‘i source assignment; b, Kilauea source assignment; c, Waldholz source assignment; d, Lāna‘i source assignment; e, Kilauea source assignment; f, Kilauea source assignment. The scale bar is 1 cm.](image)

3.3 Lithic Sourcing

Fine-grained rock suitable for adze manufacture is widely distributed around the islands. Exposures of the highest quality adze rock that were heavily exploited have been identified as "quarries" despite their being surface exposures that could be exploited without...
the deep excavation typically associated with quarrying [5, 24]. Adze-quality rock was also found outside the "quarries", perhaps most typically as cobbles and small boulders in stream beds, but also as boulder outcrops from which flakes might be removed. The large number of potential sources complicates efforts to identify the rock source of an adze or an adze reject.

Sourcing can be accomplished by a variety of means, including: i) description of thin sections and comparison with a reference collection of source thin sections [9]; ii) destructive analyses that yield high-quality geochemical data that can be compared to published analyses of geologic exposures [24]; and iii) non-destructive EDRXF analyses that yield limited geochemical data that can be compared to EDRXF analyses of source materials [22]. A two-stage characterization process is sometimes employed to maximize the utility of results and minimize the destruction of samples [21]. At the first stage, large numbers of samples are analyzed non-destructively with EDRXF to establish geochemical groups and identify outliers. At the second stage, a few samples are selected for destructive analysis, typically in the hope of identifying the local sources of groups and identifying imports among the outliers. For example, in a study of fine-grained basalt artifacts collected from habitation and ritual structures in the Kahikinui district of Maui, EDRXF analysis of 328 artifacts divided them into 17 groups. The EDRXF results were, in most cases, insufficient to assign groups to particular source locations or quarries. Nevertheless, plausible inferences based on the EDRXF results were followed up by destructive wavelength dispersive X-ray fluorescence (WDXRF) analysis of nine samples. WDXRF analysis typically yields results that can confidently assign samples to particular source locations or quarries based on published geochemical analyses. In the Kahikinui case, EDRXF was designed primarily to form the identification of one of the EDRXF groups, Group 1, as having originated at the well-known Mauna Kea adze quarry. The adze rock at Mauna Kea is extremely fine-grained and isotropic, two qualities that enhance its value as a raw material for adze manufacture [9]. The WDXRF analysis yielded results that confirmed a Mauna Kea origin for six Group 1 samples, and this made it possible to assign the other four samples in Group 1 a Mauna Kea origin based on the EDRXF results [21].

The WDXRF analysis also matched EDRXF group D with a source at Kaunolū. Twenty-five of the Kahikinui artifacts were assigned to Group D, which would make Kaunolū the leading supplier of imported adze rock to the Kahikinui sites. About 8% of the adze rock analyzed from the Kahikinui sites originated on Lāna‘i.

Adze rocks collected on Lāna‘i have been analyzed with EDRXF at least twice, once for the Māki Basin 200 Acre Industrial Development project, and earlier for an unreported project that focused on artifacts held by the Lāna‘i Culture and History Center. The non-destructive EDRXF analysis has obvious benefits for museum specimens with potential for public display; but, as noted above, it yields data that are unlikely to assign artifacts to particular source locations or quarries. As a preliminary stage of analysis, EDRXF can suggest a range of possible source locations or quarries, and it can usefully exclude some potential source locations or quarries. The information provided by EDRXF might point to certain artifacts as potential imports, with geochemical compositions unlikely to be found near the collection location, whose source location might be identified with additional analysis. At the same time, the EDRXF analysis might also identify artifacts that cannot be sourced to a particular location, but whose geochemical composition is similar to what might be expected from sources near the collection location. In these circumstances, a statistical framework that can be used to distinguish possible imports from likely local artifacts based on EDRXF information might prove useful. One way to do this is with a statistical technique known as discriminant analysis. Briefly, discriminant analysis uses so-called training data to establish a set of targets and then assigns instances from a set of test data to one or another of the targets. In the present case, the training data are EDRXF analyses of adze-quality rock from potential source locations, and the test data are the EDRXF analyses of the Lāna‘i artifacts. In the ideal case, where all of the potential rock sources are included in the training data, and the geochemical analysis is able to distinguish among them confidently, then the discriminant analysis will correctly assign each instance of test data to its source location. In real-world situations that fall short of this ideal, the discriminant analysis assignments are best interpreted more loosely, as indications of a local or non-local source and as guides for future inquiry.

The discriminant model for EDRXF analysis of Lāna‘i’s artifacts falls short of the ideal situation. Caution in the interpretation of results is clearly warranted. EDRXF training data from potential sources lacks information from many known quarry locations. The quarry data for the training set are found on the Geoarchaeology Laboratory, UH Hilo web site and include Kīhuea and Mauna Kea on Hawai‘i Island, Nu‘u and Waiākāke on Maui Island, and Wai‘āpolo on O‘ahu Island. In addition, training data were collected in 2181 by Mills and Lundblad from several locations on Lāna‘i (fig. 10). These Lāna‘i training data are lumped together in the analysis as a single Lāna‘i source.

EDRXF analysis provides abundance estimates for several elements with varying degrees of precision and accuracy. Consequently, analyses of EDRXF results typically focus on a subset of elements chosen either because they are specifically applicable to the question at hand or because the EDRXF method yields relatively precise and/or accurate estimates for them. The present analysis focused on the elements Nickel (Ni), Copper (Cu), Rubidium (Rb), Strontium (Sr), Ytrrium (Y), Zirconium (Zr), and Niobium (Nb). These are the elements chosen by the Hilo Geoarchaeology team for a principal components analysis of many of these same training data [21]. Using these seven elements, the discriminant analysis carried out here distinguishes Haleakalā, Nu‘u, and Mauna Kea from the other potential sources (fig. 11). Nevertheless, the discriminant analysis based on the EDRXF estimates of the seven elemental abundances does not confidently distinguish the Lāna‘i’s sources from the Kīhuea and Waiākāke sources.

The success of the classification yielded by the discriminant analysis of the training data can be assessed in several ways [5, 108–110]. Two common assessments are the holdout method, which holds out a random subset of the training data and then determines whether instances are correctly assigned to source targets established with the remaining training data, and the leave-out-one cross-validation method, which assesses whether each instance of the training data is correctly assigned to a source target established by the remainder of the training data. In practice, the two methods should provide similar results with a reasonably-sized training data set. The leave-out-one cross-validation
method implemented by the MASS package of the R statistical software [27] correctly assigns sources to 97% of the samples in the training data set. As expected, all of the Halakalā, Māna Kea, and Nu‘u‘u sources were assigned to the correct groups. The other potential sources fared less well: 97% of the Waialole instances were correctly assigned, as were 83% of the Lāna‘i debrisite instances and 63% of the Kīlauea instances. These results are confirmed by the hold-out method, which correctly classified 98% of a randomly selected hold-out set comprising 20% of the training data. This result indicates that the EDXRF method is sufficiently powerful to distinguish among the six sources included in the training data set. It is no guarantee that the EDXRF data would perform as well if other source locations were added to the training data set. In general, the greater the number of potential sources, the more difficult it is to distinguish among them. The same relationship holds for within-source variability. In the case of geochemical sourcing, as the known range of geochemical compositions from a source grows, the more difficult it is to distinguish that source from other sources that are geochemically similar. Thus, the success of the classification yielded by the discriminant analysis of the training data should be tempered by the understanding that it was likely aided by the formative state of the training data set, which lacks several known sources, and by the likely incomplete catalog of Lāna‘i Island sources in the EDXRF database.

Figure 10: Potential adze rock sources on Lāna‘i for which EDXRF training data are available. Note that data are also available for an outcrop in Ka‘a‘a whose location hasn’t been fixed.

Six secondarily deposited adze rejects collected from the surface during the inventory survey (see fig. 9, p. 14) were analyzed with EDXRF in an effort to determine their source locations (appendix B). Using the training data described earlier, the discriminant analysis assigns two adze rejects to a Lāna‘i source, three adze rejects to a Kīlauea source, and one adze reject to a Waialole source. As discussed, the discriminant analysis does not distinguish these sources confidently; the results should not be interpreted as indicating imports from Kīlauea and Waialole. Rather, these results indicate that there is no strong evidence that any of the adze rejects was made with importedrock. At the same time, the results do offer strong evidence that the adze rejects did not originate at Halakalā or Nu‘u‘u on Mau‘u or Māna Kea on Hawai‘i Island.

4 Discussion

This section compares the ages and firewood composition of the fire-pits at Sites 30–40–88–1980 and 30–40–96–1981 with the ages and firewood composition of eight other fire-pits on Lāna‘i Island. The ages and composition of the Lāna‘i Island fire-pits are then compared with 33 fire-pits from coastal Waimānalo, O‘ahu to distinguish temporal of vegetation change following Polynesian colonization of the islands.

Ten fire-pits on Lāna‘i have been investigated with a combination of wood charcoal identification and controlled radiocarbon dating using single pieces of a short-lived taxa. The combination of wood charcoal identification and controlled radiocarbon dating yields both a roster of the woods used to fuel a fire and a precise estimate of when the firing took place. Assuming that fires were fueled with wood that was available in
the vicinity of the fire-pit, combined identification and dating analyses potentially yield a record of regional vegetation change over time. The plausibility of the assumption and the ability of the combined identification and dating analyses to yield a record of regional vegetation change over time were established at Waimānalo, O'ahu, where replacement of the native lowland forest with cane plants brought to the islands by Polynesian settlers was underway by the mid-fifteenth century [16].

The ten fire-pits investigated in this way on Lāna'i are located on the windward and south coasts and in the central basin and plateau (fig. 12). On the windward coast, the fire-pits include one exposed on the surface at Kahapaloa and two other buried fire-pits identified in a backhoe excavation [11]. The two fire-pits investigated on the south coast were found during excavation of a beach sand deposit that was buried under alluvium deposited during and after ranching had destabilized the island's soils [15]. The fire-pit on the central plateau at Site 50-40-98-01984 was exposed on an eroding surface located on the outskirts of an abandoned pineapple field. In addition to the fire-pits in the central basin investigated in this report, the two fire-pits at Sites 50-40-98-01986 and -01987 were discovered beneath the plow zone of an abandoned pineapple field [13].

Figure 12: Location of fire-pit investigations on Lāna'i. Sources: Site 50-40-98-0037 [12]; Site 50-40-98-01980 and -01981 (this report); Site 50-40-98-01983 [11]; Site 50-40-98-01984 [14]; Site 50-40-98-01986 and -01987 [13].

The calibrated ages of the individual fire-pits have already been reported [11-13]. The reported dates can be used to investigate the tempo of fire-pit construction and use on Lāna'i by turning away from the estimated ages of individual fire-pits and asking instead when was the first occurrence of fire-pit construction and use, when was the second occurrence of fire-pit construction and use, etc. Presenting the question in this way builds upon the event view of time used in the radiocarbon dating analysis to employ instead a substance view of time typically used to frame archaeological questions. The substance view of time focusses analysis on change, which is expressed on an absolute time scale. On present evidence, the occurrence of fire-pit construction and use on Lāna'i began in the late fifteenth century and continued into the historic period (fig. 13).

![Figure 13: Occurrence of fire-pit construction and use on Lāna'i.](image)

Identification of firewood used in the Lāna'i fire-pits indicates the prevalence into the historic period of native forest, with relatively late replacement of native species by cane plants. This finding contrasts strongly with the documented transformation of the lowland forest at Waimānalo, where cane plants were well established by the middle of the fifteenth century (fig. 14). At a time when most Lāna'i fire-pits were fueled exclusively with native woods, Waimānalo fire-pits regularly yield firewood assemblages dominated by cane plants. The transformation of the lowland forest evidenced at Waimānalo started late on Lāna'i and had made relatively little progress before the island's vegetation history was radically altered during the ranching era [19].

5 Conclusion

Wood charcoal identification and dating in support to the claim made by Hawaiian tradition that Lāna'i was settled relatively late. Current evidence from the island suggests that the first fire-pits were constructed 400-500 years after Polynesians discovered the islands. However, it is extremely unlikely that the earliest evidence for human activity on
Lāna'i has been identified. Most of the well dated fire-pits are from the island's interior and the dry southern coast, which are relatively unlikely locations for early settlement. A likely location for early settlement is the windward coast in the vicinity of Maunalei Valley. The combination of a perennial stream that could feed ʻīlākai, sand beaches, shallow water fishing grounds, and relatively easy access to Maui and Mokola'i Islands all point to the desirability of the island’s windward coast for traditional settlement. Only a few fire-pits from the windward coast of Lāna'i have been identified and dated at Kahepalaloa, a location that lacks the agricultural resources that would have been available at Maunalei, and would likely have been settled at a later time. The windward Lāna'i coastline that Hawaiians knew is today deeply buried by sediment that eroded off the mountain during and after the ranching period, when large herds of grazing herbivores worked havoc on the native vegetation and destabilized soils over much of the island [19]. The widespread, severe erosion of upland soils that resulted likely had the effect of sealing early cultural deposits along the windward coast under a thick blanket of sediment that serves to protect them from erosion and disturbance. In the event the windward coast of Lāna'i is developed, one focus of historic preservation efforts should identify and recover evidence of this early settlement.

The canoe plants brought to the islands by Polynesian settlers had begun to replace native species in lowland forests by the middle of the fifteenth century at places like Waimānalo on O'ahu. This replacement of native forest by canoe plants favored by Polynesians is referred to by geographers as a process of landscape transport in which immigrants work to create settlements that resemble those of the homeland. The process of landscape transport appears to have had relatively little effect on Lāna'i prior to the ranching era; fire-pits that date late in the traditional Hawaiian period and early in the historic period were fueled almost exclusively by wood from native plants that were well adapted to the island's dry conditions and were likely established in the island's primeval forests. Canoe plants are only rarely identified in fire-pits from the island—breadfruit from Kahepalaloa, ʻākamoa, and the few from Kāneohe are exceptions that prove the rule of native firewood on the island. In this respect, one conclusion of an early inquiry into Lāna'i firewood at Kaunolu—that "many dryland forest taxa apparently persisted in this region until sometime after the abandonment of the Kaunolu settlement in the mid-1800's" [1]—appears to apply more widely and likely characterizes the vegetation history of the island as a whole.

Archaeological study of the island's stone tools is at an early stage. A reduction sequence in which an initial step removed a large flake from a boulder of suitable adze rock seems to have been most common. This reduction sequence based on flakes was practiced widely in Hawai'i and was particularly common during production of small adzes. The Lāna'i adze rejects sourced for the Māui Basin 200 Acre Industrial Development project were likely fashioned from local rocks, but there can be little doubt that imported adzes will be identified on the island with subsequent research. Adze rock collected from traditional Hawaiian sites in Kahūkui on Maui Island is reliably sourced to Kaunolu, so adze rock was definitively moving across the narrow channel between the islands. Additional research on Lāna'i stands a good chance of turning up evidence for the import of adze rock from islands nearby.

The discriminant analysis framework outlined in this report indicates that the non-destructive EDXR analyses carried out by the Hilo Geochronology Laboratory is sufficiently powerful to distinguish at least two Maui Island sources and the fine-grained adze rock from Mauna Kea from Lāna'i adze rocks. Other potential imports, from Waikōloa on O'ahu, Kīhaua on Hawai'i, and likely several other locations, will be difficult to distinguish from the local rock with EDXR, although this situation might change once the variability of Lāna'i adze rock is more completely known through characterization of a wider range of source locations. Even with this additional work on source locations, however, it seems likely that a two-stage process will be required for a study that confidently distinguishes Lāna'i's sources from imports. Currently there are several techniques that might yield information that would distinguish the local Lāna'i rocks from most imports, including petrographic description of thin sections and various geochemical techniques such as WDXRF and microprobe. These more powerful techniques are all destructive in the sense that a piece of the artifact must be sacrificed to complete the analysis, are relatively expensive to undertake compared to EDXR, and typically require an experienced geologist to interpret their results.
A ¹⁴C Dates

Beta-510703

$$\Delta^{14}C = -2.6\%$$

Comment: Sida cf. fuller twig is a short-lived material. The dated material has a highly probable association with the target event, which is fire-pit use. This short-lived material is confidently associated with use of the fire-pit feature. It provides the best estimate of when the fire-pit feature was last used. The submitted sample yielded ample carbon for dating and was processed normally in the laboratory.

Beta-510704

$$\Delta^{14}C = -10.4\%$$

Sample consists of one piece of Euphorbia cf. ceinctroides twig charcoal from Site 50-40-98-01981, Context 15. Submitted 2018-11-26. Context 15 is described as the base of a truncated fire-pit exposed in an erosion swale. It is classified as a cultural event.

Comment: Euphorbia cf. ceinctroides twig is a short-lived material. The dated material has a highly probable association with the target event, which is fire-pit use. This short-lived material is confidently associated with use of the fire-pit feature. It provides the best estimate of when the fire-pit feature was last used. The submitted sample yielded ample carbon for dating and was processed normally in the laboratory.

B EDXRF Data

<table>
<thead>
<tr>
<th>Label</th>
<th>Ni</th>
<th>Cu</th>
<th>Rb</th>
<th>Sr</th>
<th>Y</th>
<th>Zr</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context 19</td>
<td>143.296</td>
<td>138.531</td>
<td>16.689</td>
<td>342.543</td>
<td>37.753</td>
<td>155.704</td>
<td>10.772</td>
</tr>
<tr>
<td>Context 18</td>
<td>127.073</td>
<td>113.949</td>
<td>15.004</td>
<td>343.271</td>
<td>96.07</td>
<td>143.251</td>
<td>10.664</td>
</tr>
<tr>
<td>Context 0</td>
<td>172.385</td>
<td>160.297</td>
<td>16.541</td>
<td>356.349</td>
<td>57.311</td>
<td>137.105</td>
<td>10.452</td>
</tr>
<tr>
<td>Context 18</td>
<td>123.763</td>
<td>115.902</td>
<td>14.582</td>
<td>370.528</td>
<td>114.449</td>
<td>141.899</td>
<td>9.254</td>
</tr>
<tr>
<td>Context 0</td>
<td>117.062</td>
<td>89.686</td>
<td>14.488</td>
<td>350.596</td>
<td>35.178</td>
<td>139.206</td>
<td>9.72</td>
</tr>
</tbody>
</table>

Note: All data in parts per million.

Bibliography

