DRAINS LAYER ROW COL ELEVATION CONDUCTANCE DRAIN NO.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Row</th>
<th>Col</th>
<th>Elevation</th>
<th>Conductance</th>
<th>Drain No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32</td>
<td>25</td>
<td>1103.00</td>
<td>255.80</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>33</td>
<td>25</td>
<td>1500.00</td>
<td>1320.00</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>33</td>
<td>24</td>
<td>1500.00</td>
<td>1370.00</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RECHARGE WILL BE READ ON UNIT 18 USING FORMAT: (10E12.4)

<table>
<thead>
<tr>
<th>Unit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>STRESS PERIOD NO.</td>
<td>LENGTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NUMBER OF TIME STEPS = 1

MULTIPLIER FOR DELT = 1.000

INITIAL TIME STEP SIZE = 1.000000

<table>
<thead>
<tr>
<th>LAYER</th>
<th>ROW</th>
<th>COL</th>
<th>STRESS RATE</th>
<th>WELL NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>44</td>
<td>16</td>
<td>0.00000</td>
<td>1</td>
</tr>
</tbody>
</table>

| 22 WELLS |
SOLUTION BY THE STRONGLY IMPLICIT PROCEDURE

MAXIMUM ITERATIONS ALLOWED FOR CLOSURE = 25000
ACCELERATION PARAMETER = 1.0000
HEAD CHANGE CRITERION FOR CLOSURE = 0.10000E-02
SIP HEAD CHANGE PRINTOUT INTERVAL = 1
CALCULATE ITERATION PARAMETERS FROM MODEL CALCULATED WSEED

HORIZONTAL FLOW BARRIERS - LISTED BY LAYERS. WITHIN EACH LAYER, THE LOCATION OF A BARRIER IS IDENTIFIED BY THE 2 CELLS ON BOTH SIDES OF THE BARRIER. THE ROW AND COLUMN NUMBER OF THE TWO CELLS ARE RESPECTIVELY IROW1, ICOL1, AND IROW2, ICOL2.

<table>
<thead>
<tr>
<th>IROW1</th>
<th>ICOL1</th>
<th>IROW2</th>
<th>ICOL2</th>
<th>HYD. CONDJWIDTH</th>
<th>BARRIER NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>30</td>
<td>31</td>
<td></td>
<td>0.5010E-04</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>29</td>
<td>30</td>
<td></td>
<td>0.5010E-04</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>28</td>
<td>29</td>
<td></td>
<td>0.5010E-04</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>29</td>
<td>28</td>
<td></td>
<td>0.5010E-04</td>
<td>4</td>
</tr>
<tr>
<td>37</td>
<td>36</td>
<td>35</td>
<td></td>
<td>0.5010E-04</td>
<td>5</td>
</tr>
<tr>
<td>33</td>
<td>32</td>
<td>31</td>
<td></td>
<td>0.5010E-04</td>
<td>6</td>
</tr>
<tr>
<td>28</td>
<td>27</td>
<td>26</td>
<td></td>
<td>0.5010E-04</td>
<td>7</td>
</tr>
<tr>
<td>27</td>
<td>26</td>
<td>25</td>
<td></td>
<td>0.5010E-04</td>
<td>8</td>
</tr>
<tr>
<td>26</td>
<td>28</td>
<td>28</td>
<td></td>
<td>0.5010E-04</td>
<td>9</td>
</tr>
<tr>
<td>34</td>
<td>33</td>
<td>32</td>
<td></td>
<td>0.5010E-04</td>
<td>10</td>
</tr>
<tr>
<td>29</td>
<td>28</td>
<td>27</td>
<td></td>
<td>0.5010E-04</td>
<td>11</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>28</td>
<td></td>
<td>0.5010E-04</td>
<td>12</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>29</td>
<td></td>
<td>0.5010E-04</td>
<td>13</td>
</tr>
<tr>
<td>31</td>
<td>30</td>
<td>29</td>
<td></td>
<td>0.5010E-04</td>
<td>14</td>
</tr>
<tr>
<td>32</td>
<td>31</td>
<td>30</td>
<td></td>
<td>0.5010E-04</td>
<td>15</td>
</tr>
<tr>
<td>35</td>
<td>34</td>
<td>33</td>
<td></td>
<td>0.5010E-04</td>
<td>16</td>
</tr>
</tbody>
</table>

BOTTOM = -400.0000 FOR LAYER 1

0
0391	478.8	478.7	839.1	839.8	840.9	842.2	843.9	845.6	1048.1
0392	158.9	158.9	158.9	158.9	158.9	158.9	158.9	158.9	158.9
0393	2588	2588	2588	2588	2588	2588	2588	2588	2588
0394	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0395	1208	1208	1208	1208	1208	1208	1208	1208	1208
0396	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0397	375.8	375.8	375.8	375.8	375.8	375.8	375.8	375.8	375.8
0398	1251	1251	1251	1251	1251	1251	1251	1251	1251
0399	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0400	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0401	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0402	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0403	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0404	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0405	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0406	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0407	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

HEAD PRINT FORMAT IS FORMAT NUMBER 0

DRAWDO1M4 PRINT FORMAT IS FORMAT NUMBER 0

OHMS WILL BE SAVED ON UNIT 30

DRAWDOWNS WILL BE SAVED ON UNIT 40

OUTPUT CONTROL IS SPECIFIED EVERY TIME STEP

COLUMN TO ROW ANISOTROPY = 1.000000

DELR = 2000.000

DELC = 2000.000

HYD. COND. ALONG ROWS FOR LAYER 1 WILL BE READ ON UNIT 11 USING FORMAT: (10E124)
WELL 3 (State No. 4954-01)

Observed vs. Simulated Water Levels

water level in ft. above msl

year

Observed S=0.01 S=0.05 S=0.1 S=0.2 S=0.4
WELL 4 (State No. 4952-02)

Observed vs. Simulated Water Levels

water level in ft. above msl

year

Observed

$S=0.01$

$S=0.05$

$S=0.1$

$S=0.2$

S^*
WELL 5 (State No.4852-02)

Observed vs. Simulated Water Levels

Observed $S=0.01$ - $S=0.05$ - $S=0.1$ - $S=0.2$ - $S=0.4$
WELL 9 (State No. 4854-01)

Observed vs. Simulated Water Levels

water level in ft. above msli

year

Observed • S=0.01 •• S=0.05 • S=0.1 •• S=0.2 •• S=0.4
SHAFT 1 (State No. 5253-01)
Observed vs. Transient Simulated W.L.

Observed water levels

Storage Coefficient S = 0.01, 0.1, & 0.4
WELL 1 (State No.4853-02)
Observed vs. Simulated Transient W.L.

Best-Fit Calibration Pumped at '42 -'92 Average Pumpage

Observed water levels

S = Storage Coefficient

S = 0.4
S = 0.1
S = 0.01

water level in ft. above msl

year
SHAFT 3 BULKHEAD (State No. 4953-02)

Observed vs. Simulated Transient W.L.

Best-Fit Calibration Pumped at '42-'92 Average Pumpage

Observed water levels

$S =$ Storage Coefficient

$S=0.4$

$S=0.1$

$S=0.01$
WELL 2 in shaft 3 (State No.4953-01)

Observed vs. Simulated Transient W.L.

Best-Fit Calibration Pumped at '42 - '92 Average Pumpage

Observed water levels

$S =$ Storage Coefficient

$S = 0.4$

$S = 0.1$

$S = 0.01$
WELL 3 (State No. 4954-01)

Observed vs. Simulated Transient W.L.

Best-Fit Calibration Pumped at '42 -'92 Average Pumpage

Observed water levels.

$S = \text{Storage Coefficient}$

$S = 0.4$

$S = 0.1$

$S = 0.01$
WELL 4 (State No.4952-02)

Observed vs. Simulated Transient W.L.

Best-Fit Calibration Pumped at '42 -'92 Average Pumpage

Observed water levels

$S =$ Storage Coefficient

$S=0.4$

$S=0.1$

$S=0.01$

Water level in ft. above msl

year

1942 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900
WELL 5 (State No. 4852-02)

Observed vs. Simulated Transient W.L.

Best-Fit Calibration Pumped at '42 -'92 Average Pumpage

$S = \text{Storage Coefficient}$

Observed water levels

water level in ft. above msl

year

1400 1450 1500 1550 1600 1650 1700 1750

1942 2000 2200 2300 2400 2500 2600 2700 2800 2942
WELL 6 (State No. 5054-02)

Observed vs. Simulated Transient W.L.

Best-Fit Calibration Pumped at '42 - '92 Average Pumpage

Observed water levels

\[S = \text{Storage Coefficient} \]

- \(S = 0.4 \)
- \(S = 0.1 \)
- \(S = 0.01 \)

Water level in ft. above msl

Year

1942 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000

1040 1020 1000 980 960 940 920 900
WELL 9 (State No.4854-01)

Observed vs. Simulated Transient W.L.

Best-Fit Calibration Pumped at '42 - '92 Average Pumpage

Initial water level = 748

S = Storage Coefficient
LOWER MAUNALEI TUN (State No.5053-01)

Constant water level elevation = 1103
Constant water level elevation = 1505 msl
SHAFT 3 BULKHEAD (State No.4953-02)

monthly (latest period 13/94)
WELL 2 in shaft 3 (State No. 4953-01)

water level elevation (mсл) ft.

monthly (latest period 13/94)

dynamic static
WELL 3 (State No. 4954-01)

water level elevation (msl) ft.

monthly (latest period 13/94)

dynamic — static
WELL 4 (State No. 4952-02)

Water level elevation (msl ft.)

Monthly (latest period 13/94)

Dynamic Static
WELL 5 (State No. 4852-02)

water level elevation (msl) ft.

monthly (latest period 13/94)

--- dynamic --- static