#### CARLSMITH BALL LLP

STEVEN S. C. LIM 2505 JENNIFER A. BENCK 8357 ASB TOWER 1001 Bishop Street, Suite 2100 Honolulu, Hawaii 96813 Tel No. 808.523.2500 Fax No. 808.523.0842

Attorneys for Successor Petitioner KAMEHAMEHA SCHOOLS

STATE OF HAWAII

#### BEFORE THE LAND USE COMMISSION

### OF THE STATE OF HAWAII

In the Matter of the Petition of

TOM GENTRY AND GENTRY-PACIFIC, LTD.

To Amend the Agricultural Land Use District Boundary into the Urban Land Use District for Approximately 1,395 Acres of Land at Waiawa, Ewa, Oʻahu, City and County of Honolulu, State of Hawaiʻi, Tax Map Key Nos. 9-4-06: portion of 26; 9-6-04: portion of 1 and portion of 16; and 9-6-05: portion of 1, portion of 7 and portion of 14

DOCKET NO. A87-610

SUCCESSOR PETITIONER'S LIST OF REBUTTAL EXHIBITS; KS EXHIBITS 35 - 39; SUCCESSOR PETITIONER'S SUPPLEMENTED LIST OF WITNESSES; CERTIFICATE OF SERVICE

# SUCCESSOR PETITIONER'S LIST OF REBUTTAL EXHIBITS; KS EXHIBITS 35 - 39; SUCCESSOR PETITIONER'S SUPPLEMENTED LIST OF WITNESSES; CERTIFICATE OF SERVICE

Successor Petitioner JANEEN-ANN AHULANI OLDS, LANCE KEAWE WILHELM, ROBERT K.W.H. NOBRIGA, CORBETT AARON KAMOHAIKIOKALANI KALAMA, and MICAH A. KANE, as TRUSTEES OF THE ESTATE OF BERNICE PAUAHI BISHOP, dba KAMEHAMEHA SCHOOLS, by and through its legal counsel, CARLSMITH BALL LLP,

hereby respectfully submits to the Land Use Commission of the State of Hawaii, Successor Petitioner's List of Rebuttal Exhibits; KS Exhibits 35 - 39; Successor Petitioner's Supplemented List of Witnesses; Certificate of Service.

DATED: Honolulu, Hawaii, October 10, 2014.

STEVEN S.C. LIM

JEMNIFER A. (BENCK) LIM

Attorneys for Successor Petitioner KAMEHAMEHA SCHOOLS

# LAND USE COMMISSION DOCKET NO. A87-610 SUCCESSOR PETITIONER KAMEHAMEHA SCHOOLS LIST OF EXHIBITS

| KS<br>EX.<br>NO.   | DESCRIPTION                                                                                                                                                                                | PARTY OBJECTIONS              | ADMIT                   |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|--|--|--|--|
| KS Ext<br>Decision | KS Exhibits 1 - 18 were filed on May 13, 2014 with the Motion for Order Amending the Findings of Fact, Conclusions of Law and Decision and Order dated May 17, 1998 in Docket No. A87-610. |                               |                         |  |  |  |  |
| Succes<br>Comm     | sor Petitioner's KS Exhibit 8 (Errata), and KS Exhibits 19 - 34 in Docket No. A8 ission and copies served on all parties on June 20, 2014.                                                 | 7-610 were filed with the Lar | nd Use                  |  |  |  |  |
| KS Exl<br>parties  | nibits 35 - 39 (Rebuttal Exhibits) in Docket No. A87-610 were filed with the Landon October 10, 2014.                                                                                      | d Use Commission and copie    | s served on all         |  |  |  |  |
| 1.                 | Survey map outlining the 1,395 acre KS Property reclassified to the State Land Use Urban District in LUC Docket No. A87-610                                                                |                               |                         |  |  |  |  |
| 2.                 | Graphic showing the State Land Use Districts                                                                                                                                               |                               |                         |  |  |  |  |
| 3.                 | Portions of title reports for the KS Property                                                                                                                                              |                               |                         |  |  |  |  |
| 4.                 | Graphic showing City and County zoning districts                                                                                                                                           |                               |                         |  |  |  |  |
| 5.                 | Map showing locations of the proposed rail transit stations located with 1- and 2-mile radii of the KS Property                                                                            |                               |                         |  |  |  |  |
| 6.                 | Description of the SunEdison project team                                                                                                                                                  |                               |                         |  |  |  |  |
| 7,                 | Curriculum Verite of Nicola Doss, SunEdison Hawai'i                                                                                                                                        |                               |                         |  |  |  |  |
| 8.                 | Map showing the approximate locations of solar project (Phase 1 and Phase 2) on the KS Property.                                                                                           | WITHDRAWN/<br>CORRECTED       | WITHDRAWN/<br>CORRECTED |  |  |  |  |

| 8.  | KS Exhibit 8 filed with the Motion on May 13, 2014, is to be replaced with the exhibit marked KS Exhibit 8 (Errata), filed on June 20, 2014                                                                                                             |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 9.  | Visual simulations of Phase 1 and Phase 2 of the proposed solar project on KS property                                                                                                                                                                  |  |  |
| 10. | Portions of title policy No. 5011415-3549                                                                                                                                                                                                               |  |  |
| 11. | Portions of the City and County of Honolulu Land Use Ordinances Master Use Table 21-3                                                                                                                                                                   |  |  |
| 12. | Pearl City Neighborhood Board resolution, dated April 22, 2014                                                                                                                                                                                          |  |  |
| 13. | Mililani/Waipio/Melemanu Neighborhood Board resolution, dated March 26, 2014                                                                                                                                                                            |  |  |
| 14. | Letter from George I. Atta, Director, Department of Planning and Permitting,<br>City and County of Honolulu, to Keith Chang, Kamehameha Schools, dated<br>April 29, 2014                                                                                |  |  |
| 15. | Letter from State of Hawai'i, Department of Health to the State Office of Planning, dated January 2, 1991, re zone of contribution.  Letter from Department of the Navy to State Department of Health, dated December 17, 1990 re zone of contribution. |  |  |
| 16. | Central Oʻahu Sustainable Communities Plan land use map                                                                                                                                                                                                 |  |  |
| 17. | SunEdison sample curriculum for middle school students; SunEdison sample teacher's guide for high school students                                                                                                                                       |  |  |
| 18. | Letter from State Department of Land and Natural Resources to Tosh Hosoda, Senior Vice President, Gentry Homes, Ltd., dated June 21, 2000                                                                                                               |  |  |

| 19. | Letter from Don Hibbard, Administrator, SHPD to Patrice Tottori Liu, Vice President, Gentry Hawaii, Ltd., dated July 7, 1992, accepting archaeological inventory survey report.                                   |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 20. | Cultural Impact Assessment for 3,600 Acres in Waiawa and Waipi'o Ahupua'a, Oahu (June 2003)                                                                                                                       |  |
| 21. | Cultural Resources Preservation Plan (September 2005)                                                                                                                                                             |  |
| 22. | Letter from Melanie Chinen, Administrator, SHPD to Patrice Tottori Liu,<br>Waiawa Ridge Development, dated October 25, 2007 re approval of Cultural<br>Resources Preservation Plan                                |  |
| 23. | Letter from Susan A. Lebo, PhD, SHPD to Chris Monahan, PhD, Principal Archaeologist, TCP Hawai'i LLC, dated April 21, 2014                                                                                        |  |
| 24. | Graphic showing zone of contribution and location of utility improvements                                                                                                                                         |  |
| 25. | Letter from J.W. James, Captain, US Navy Commander, to Keith K.A. Chang, KS regarding zone of contribution, dated May 28, 2014                                                                                    |  |
| 26. | Email exchange between M. Hickey, Senior Paralegal, AT&T Services, Inc. and J. Benck, Esq., May 29 - 30, 2014                                                                                                     |  |
| 27. | Portions of the City and County of Honolulu Land Use Ordinances Master Use Table 21-3 related to livestock grazing                                                                                                |  |
| 28. | Letter dated April 9, 2014, from Keith K.A. Chang to Joanna L. Seto, Department of Health, describing proposed solar project and enclosing graphic with zone of contribution and locations of Phase 1 and Phase 2 |  |
| 29. | Resume of Thomas S. Witten, ASLA, Chairman, PBR Hawaii & Associates, Inc.                                                                                                                                         |  |

| 30. | Resume of Paul T. Matsuda, P.E., Director of Civil Engineering, Group 70 International                                                      |          |       |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|
| 31. | Resume of Jason Alapaki Jeremiah, Cultural Resources, Senior Manager,<br>Kamehameha Schools                                                 |          |       |
| 32. | Resume of Sohrab Rashid, TE, Principal, Fehr & Peers                                                                                        |          | SP FI |
| 33. | Resume of Chris Monahan, Ph.D., Principal Archaeologist, TCP Hawaii LLC                                                                     |          |       |
| 34. | Preliminary assessment re solar glare (Sandia Solar Glare Hazard Analysis Tool Report)                                                      |          |       |
|     | REBUTTAL EXHIBITS, FILED OCTOBER                                                                                                            | 10, 2014 | *     |
| 35. | Construction Traffic Assessment for the Proposed Waiawa Solar Farm (Oahu, HI) dated August 1, 2014                                          |          |       |
| 36. | Waiawa 50 MW Solar Project – Interconnection Feasibility and Impact Assessment, dated September 16, 2014                                    |          |       |
| 37. | Waiawa Solar Farm Project Preliminary Civil Considerations, dated October 6, 2014                                                           |          |       |
| 38. | Kamehameha Schools' Considerations for Development                                                                                          |          |       |
| 39. | Letter to SHPD regarding submission of Archaeological Inventory Survey of 1,395 Acres of Kamehameha Schools' Land, dated September 16, 2014 |          |       |

# LAND USE COMMISSION DOCKET NO. A87-610

# SUCCESSOR PETITIONER KAMEHAMEHA SCHOOLS SUPPLEMENTED LIST OF WITNESSES<sup>1</sup>

| NAME/ORGANIZATION/POSITION (list in order of appearance)                            | TO BE<br>QUALIFIED AS<br>A WITNESS IN:        | SUBJECT MATTER                                                                      | EXHIBIT<br>NUMBER(S)                                  | WRITTEN<br>TESTIMONY | LENGTH<br>OF<br>DIRECT |
|-------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------|------------------------|
| Thomas S. Witten, ASLA / PBR Hawaii & Associates, Inc. / Chairman                   | Land use planning;<br>environmental<br>review | Land use and environmental planning                                                 | 1, 2, 4, 5, 8<br>(Errata), 11, 14,<br>16, 27, 29      | No                   | 30                     |
| Giorgio Caldarone / Kamehameha<br>Schools / Regional Asset Manager                  | N/A                                           | Project development<br>and renewable energy<br>sector lead                          | 1, 2, 3, 10, 15,<br>18, 24, 25, 26,<br>28             | No                   | 20                     |
| Nicola Doss / SunEdison Hawai'i / Senior<br>Manager                                 | Utility scale solar development projects      | Overall project analysis                                                            | 6, 7, 8 (Errata),<br>9, 12, 13, 17,<br>32, 34, 35, 36 | No                   | 30                     |
| Paul T. Matsuda, P.E. /Group 70<br>International / Director of Civil<br>Engineering | Civil engineering                             | Civil engineering                                                                   | 24, 30, 37                                            | No                   | 15                     |
| Sohrab Rashid T.E. / Fehr & Peers / Principal                                       | Traffic engineering                           | Traffic management                                                                  | N/A                                                   | No                   | N/A                    |
| Catherine Camp / Kamehameha Schools /<br>Director of Development                    | N/A                                           | Project development;<br>community relations;<br>future plans for<br>Waiawa property | 1, 2, 4, 5, 8<br>(Errata), 14, 16,<br>24, 38          | No                   | 20                     |

<sup>&</sup>lt;sup>1</sup> Successor Petitioner's First List of Witnesses was filed on June 16, 2014. Successor Petitioner's First List of Rebuttal Witnesses was filed on June 20, 2014. This Supplemented List of Witnesses identifies the KS Exhibits that will be addressed by the identified witnesses. No new witnesses have been listed.

| Chris Monahan, Ph.D. / TCP Hawaii LLC / Principal Archaeologist,                       | Archaeology                     | Archaeological and historic resources                 | 23, 33, 39                | No | 10 |
|----------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------|---------------------------|----|----|
| Jason Alapaki Jeremiah / Kamehameha<br>Schools / Cultural Resources, Senior<br>Manager | Historic and cultural resources | Archaeological,<br>historic and cultural<br>resources | 19, 20, 21, 22,<br>23, 31 | No | 10 |

# DEFORE THE LAND USE COMMISSION OF THE STATE OF HAWAII

To Amend the Agricultural In the Matter of the Petition of

DOCKET NO. A87-610

TOM GENTRY AND GENTRY-PACIFIC, LTD

Land Use District Boundary into the Urban Land Use District for Approximately 1,395 Acres at Waiawa, Ewa, Oahu, State of Hawaii, Tax Map Key Nos." 9-4-06: Portion of 26; 9-6-04: Portion of 1 and Portion of 16; and 9-6-05: Portion of 1, Portion of 7 and Portion of 14

CERTIFICATE OF SERVICE

### CERTIFICATE OF SERVICE

I hereby certify that due service of a copy of the foregoing was served upon the following by hand delivery on October 10, 2014, addressed to:

| HAND DELIVERY | LEO R. ASUNCION, JR., Acting Director Office of Planning State Office Tower, 6th Floor 235 South Beretania Street Honolulu, HI 96813                                      |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HAND DELIVERY | DAVID M. LOUIE, Esq. BRYAN YEE, Esq. Deputy Attorney General Commerce and Economic Development Department of the Attorney General 425 Queen Street Honolulu, Hawaii 96813 |

| HAND DELIVERY | GEORGE I. ATTA, Director              |
|---------------|---------------------------------------|
|               | Department of Planning and Permitting |
|               | City & County of Honolulu             |
|               | 650 South King Street, 7th Floor      |
|               | Honolulu, HI 96813                    |
|               |                                       |
| HAND DELIVERY | DONNA Y.L. LEONG, Esq.                |
|               | DON S. KITAOKA, Esq.                  |
|               | Deputy Corporation Counsel            |
|               | Department of the Corporation Counsel |
|               | Honolulu Hale                         |
|               | 530 South King Street, Room 110       |
|               | Honolulu, HI 96813                    |

STEVEN S.C. LIM

/jennifer a. (benck) lim

Attorneys for Successor Petitioner KAMEHAMEHA SCHOOLS

Dated: Honolulu, Hawaii, October 10, 2014

# FEHR PEERS

August 1, 2014

Nicola Doss SunEdison Senior Manager-Hawai'i North America Project Development 2987 Kalakaua, Suite 104 Honolulu, HI 96815 STATE OF HAWAII

Subject:

Construction Traffic Assessment for the Proposed Waiawa Solar Farm

(Oahu, HI)

Dear Ms. Doss:

Fehr & Peers has prepared a traffic assessment for a proposed solar farm to be constructed by SunEdison in the Waiawa area on the island of O'ahu. This assessment was prepared in response to the State of Hawaii Department of Transportation - Highway's Division's (HDOT) request for a traffic assessment of the proposed solar farm project. This letter includes an assessment of the vehicle trip generation anticipated during both project construction and typical project operations, as well as an analysis of intersection operations to determine any traffic-related impacts from the project.

# PROJECT DESCRIPTION

The proposed project is a new photovoltaic solar installation located in the Waiawa area, generally east of the H-2 Freeway/Ka Uka Boulevard interchange and west of Pearl City. The solar farm is expected to be constructed in two phases: Phase I will consist of a 50 megawatt (MW) installation in the north/west portion of the site on approximately 300 acres, while Phase II will be located in the south/east portion of the site within a 268-acre easement, but the details of the Phase II installation are yet to be determined. Accordingly, this assessment focuses on the construction and operation of Phase I.

Once operational, the solar farm is anticipated to have no more than five employees on site at any given time. As a result, the number of employee vehicle trips generated by the proposed project during typical operations is considered negligible (i.e., the daily variation in traffic in peak hour volumes on roadways near the site will be greater than the number of trips generated by the site and drivers would not be able to perceive the additional traffic). The primary traffic concerns

Ms. Nicola Doss August 1, 2014 Page 2 of 15

for this solar farm project are associated with potential temporary construction traffic impacts. Based on the needs of a 50 MW facility, the project construction is anticipated to take place over the course of 12 months and will require up to 150 workers on site at a given time. According to the construction of similar facilities in other locations, the number of employees for the first three months and the last three months of construction will be lower with peak on-site employment occurring for the five to six months in the middle of the project schedule. The average number of employees during construction is approximately 100.

According to current plans, construction is expected to begin in 2015 and continue into 2016. Thus, the transportation analysis examines impacts using a Year 2016 baseline.

VEHICLE ACCESS

Two potential access points are being considered for construction traffic access:

- 1. A driveway on Waiawa Prison Road along the northern edge of the project site with regional connections to the H-2 freeway via Ka Uka Boulevard and Mililani Cemetery Road, or
- 2. A driveway via Waihona Street mauka of Kamehameha Highway near the southern tip of the project site.

Circulation associated with each of these access points is described below.

Under Access Option 1, the project site driveway is expected to be located on Waiawa Prison Road approximately 2,400 feet east of Mililani Cemetery Road at the existing driveway as shown on **Attachment A**. Regional traffic would approach from either Ka Uka Boulevard (from the west) or from either direction on the H-2 Freeway and would turn onto Mililani Cemetery Road. Traveling north, vehicles on Mililani Cemetery Road would negotiate several curves before reaching the Waiawa Prison Road intersection where they would turn right to the existing driveway to the site. Waiawa Prison Road is narrower than the cemetery road but both facilities serve a limited amount of traffic. This access provides the most direct access to the northern area of the site. This location is 1.3 miles from the Ka Uka Boulevard interchange and any temporary queuing at the project driveway would not impact interchange operations.

Ms. Nicola Doss August 1, 2014 Page 3 of 15

From a jurisdictional perspective, Ka Uka Boulevard in the immediate vicinity of the H-2 freeway is maintained and operated by the Hawaii Department of Transportation – Highways Division (HDOT). Mililani Cemetery Road is maintained by the City & County of Honolulu Department of Transportation Services (DTS), while Waiawa Prison Road is a private street with multiple owners.

Under Access Option 2, the site driveway intersection would be located on Waihona Street approximately 1,780 feet mauka of Kamehameha Highway as shown on **Attachment A**. At the southern end of the site, the Waihona Street / Kamehameha Highway intersection is a three-legged configuration that is currently stop controlled on Waihona Street. Kamehameha Highway is two lanes in the ewa-bound direction and one lane in the Diamond Head-bound with a raised median separating the directions of travel. Additionally, a channelized right-turn lane is provided for ewa-bound vehicles turning right onto Waihona Street. Waihona Street is one lane in each direction and a short channelized right-turn lane is provided for makai-bound vehicles turning onto Kamehameha Highway (and ultimately mauka-bound H-2 or ewa-bound H-1). Mauka-bound on Waihona Street just before the site driveway intersection, the roadway curves, and sight distance will need to be evaluated to ensure adequacy. It is possible that the existing on-street parking on Waihona Street will need to be removed in order to accommodate the required sight distance. Kamehameha Highway is under the jurisdiction of HDOT, while Waihona Street is under the control of DTS.

# ALTERNATIVE MODE ACCESS

#### BICYCLE AND PEDESTRIAN TRAVEL

Given the undeveloped nature of the project site and the low density development of the immediate surrounding area, the potential conflict is low between site-generated traffic and non-automobile modes including walking and biking. On the northern end of the project site at Ka Uka Boulevard east of the H-2 freeway, the amount of pedestrian and bicycle activity is negligible. Mililani Cemetery Road and Waiawa Prison Road both include vehicle travel lanes only and are not intended to accommodate separate bicycle and pedestrian travel. Given the long distances between the H-2 interchange and both the cemetery (approximately 1.2 miles) and the correctional facility (approximately 2.9 miles), significant use of active transportation modes is not anticipated. In addition, no sidewalks are provided on the Ka Uka Boulevard overcrossing over H-2. While separate bicycle and pedestrian facilities are typically encouraged to reduce vehicle traffic, the rural circulation system and distant land uses in the vicinity of the project site are not conducive to multi-modal travel.

Ms. Nicola Doss August 1, 2014 Page 4 of 15

Under Access Option 2 via Waihona Street, pedestrian and bicycle activity is more likely given the development along Waihona Street and the proximity of these land uses to the more urbanized Pearl City area. Accordingly, Waihona Street includes sidewalks on both sides of the roadway and provides additional width in the vehicle travel lanes to accommodate bicyclists. When project-generated trucks or employee vehicles would turn into and out of the site driveway, they would be generally crossing the sidewalk or makai-bound bicycle traffic at a 90-degree angle, which is ideal from a visibility perspective. While Kamehameha Highway does not include sidewalks at the Waihona Street intersection, a shoulder area is provided on both sides of the roadway and includes room for pedestrians to travel without conflicting with vehicles. It should be noted that several existing industrial uses on Waihona Street already generate truck trips that use both roadways in this area.

#### **TRANSIT**

There is very minimal existing transit access to the site as there are no bus stops near either of the options for site access. The planned Honolulu High Capacity Transit Corridor extends from Kapolei to Ala Moana Shopping Center and is currently under construction. The rail transit line is expected to be completed and fully operational by 2019. The closest stop to the site will be the Pearl Highlands station, located makai of Kamehameha Highway opposite Waihona Street.

The Pearl Highlands station will serve as a regional transit hub and will include a park and ride facility, as well as a transfer station for buses from Central Oahu. The existing stop-controlled Waihona Street/Kamehameha Highway intersection will be signalized as part of the rail project and will improve overall access to the uses on Waihona Street.

#### POTENTIAL IMPACTS TO ACTIVE MODES AND TRANSIT

The City and County of Honolulu or HDOT does not specify impact criteria for pedestrian, bicycle, and transit impacts. However, these impacts are generally evaluated based on whether a proposed project would: 1) conflict with existing or planned pedestrian, bicycle, or transit facilities, or 2) create walking, bicycling, or transit use demand without providing adequate and appropriate facilities for non-motorized mobility. The existing amenities for pedestrians, bicycles, and transit users were inventoried to evaluate the quality of the facilities in place today.

Ms. Nicola Doss August 1, 2014 Page 5 of 15

# TRAFFIC VOLUMES

The addition of traffic from the proposed project may impact operations of intersections adjacent to the project site during the anticipated 12-month construction period. The analysis of the intersections adjacent to each access location is presented below.

#### YEAR 2016 BASELINE TRAFFIC VOLUMES

Project construction is expected to generally occur during 2016. Existing traffic volumes from previous traffic studies were increased by an average growth factor of one percent per year. Volumes were obtained for the following intersections:

- 1. Ka Uka Blvd./H-2 Northbound Off-ramp
- 2. Ka Uka Blvd./H-2 Southbound On-ramp
- 3. Ka Uka Blvd./H-2 Southbound Off-ramp
- 4. Kamehameha Hwy./Waihona Street

Traffic from the proposed project was added to the Year 2016 baseline volumes to determine the potential impacts from construction traffic. Project traffic estimates are described below.

#### ESTIMATED PROJECT TRIP GENERATION

The primary traffic issue for solar farm projects is associated with the temporary construction traffic. Construction traffic comprises private vehicles driven by construction workers plus trips made by trucks delivering materials, hauling earth and debris, and providing other services (e.g., food trucks). In general, workers are assumed to make one inbound trip and one outbound trip for a total of two daily trips. Detailed information on construction activities was provided by SunEdison and included the number of trucks needed to deliver the photovoltaic panels, steel piles for mounting the panels, gravel for on-site roadways, etc. This information was used to estimate the total number of truck trips during the planned construction period of 12 months. The full details of the trip generation analysis and assumptions associated with each scenario are included in **Attachment B**. It is important to note that this information is preliminary and will be refined once a specific contractor is selected to construct the project. At that time, construction traffic management plan will also be prepared.

This traffic assessment report considered two scenarios for project construction. The first scenario represents a conservative approach and assumes that all 150 construction workers drive their own

Ms. Nicola Doss August 1, 2014 Page 6 of 15

vehicles to and from the project site, and that the majority of heavy vehicle truck trips occur during the AM and PM peak hours. This situation is not likely to occur since deliveries are expected to occur throughout the day and in many cases, before the AM peak hour. This "Conservative" trip generation is summarized in **Table 1** below and represents an absolute worst-case scenario.

| Table 1-Project Construction Trip Generation – Conservative |             |       |         |     |       |        |     |
|-------------------------------------------------------------|-------------|-------|---------|-----|-------|--------|-----|
| Tain True                                                   | Doile Trine | AM    | Peak Ho | ur  | PM I  | Peak H | our |
| Trip Type                                                   | Daily Trips | Total | In      | Out | Total | In     | Out |
| Auto <sup>1</sup>                                           | 300         | 150   | 150     | 0   | 150   | 0      | 150 |
| Shuttle Bus                                                 | 0           | 0     | 0       | 0   | 0     | 0      | 0   |
| Trucks <sup>2</sup>                                         | 42          | 18    | 18      | 0   | 18    | 0      | 18  |
| Total                                                       | 342         | 168   | 168     | 0   | 168   | 0      | 168 |

#### Note:

The second scenario considered for project construction assumes that most employees will drive to an off-site parking lot and will be shuttled to the site via buses to be arranged by the site contractor. This scenario results in a significant reduction in single-occupant vehicle trips compared to the conservative scenario and may be implemented by the project contractor if an appropriate on-site parking area cannot be provided. This scenario also assumes that 75% of the heavy vehicle truck trips would occur during off-peak hours. The trip generation summary for this "with Employee Shuttle" scenario is presented in **Table 2** below.

| Table 2-Project Construction Trip Generation – with Employee Shuttles |             |       |         |     |       |        |     |
|-----------------------------------------------------------------------|-------------|-------|---------|-----|-------|--------|-----|
| Trin Trun                                                             | Daile Tains | AM    | Peak Ho | our | PM i  | Peak H | our |
| Trip Type                                                             | Daily Trips | Total | In      | Out | Total | În     | Out |
| Auto <sup>1</sup>                                                     | 16          | 8     | 8       | 0   | 8     | 0      | 8   |
| Shuttle Bus <sup>2</sup>                                              | 8           | 4     | 4       | 0   | 4     | 0      | 4   |
| Trucks <sup>3</sup>                                                   | 42          | 7     | 7       | 0   | 6     | 0      | 6   |
| Total                                                                 | 66          | 19    | 19      | 0   | 18    | 0      | 18  |

#### Note:

<sup>&</sup>lt;sup>1</sup> Assumes 100% of construction employees drive to project site in a single occupant vehicle

<sup>&</sup>lt;sup>2</sup> Assumes equipment, debris, hauling, excavation, etc. trucks arrive and depart during peak hours

<sup>&</sup>lt;sup>1</sup> Assumes 5% of construction employees drive to project site as single occupant vehicle

<sup>&</sup>lt;sup>2</sup> Assumes 46 passengers per shuttle bus

<sup>3</sup> Assumes 75% equipment, debris, hauling, excavation, etc. trucks arrive and depart during off-peak hours

Ms. Nicola Doss August 1, 2014 Page 7 of 15

Once operational, the solar farm is anticipated to have approximately five (5) employees on site at any given time. As a result, the employee trips generated by the proposed project are nominal. Table 3 below presents the estimated project trip generation once the solar farm is operational.

| Table 3-Project Operations Trip Generation |                |                   |                 |     |       |              |     |  |  |
|--------------------------------------------|----------------|-------------------|-----------------|-----|-------|--------------|-----|--|--|
| Trin Tune                                  | Daily          | Al                | M Peak Ho       | ur  | PI    | PM Peak Hour |     |  |  |
| Trip Type                                  | Trips          | Total             | In              | Out | Total | In           | Out |  |  |
| Employees <sup>1</sup>                     | 10             | 5                 | 5               | 0   | 5     | 0            | 5   |  |  |
| Note:                                      |                |                   |                 |     |       |              |     |  |  |
| <sup>1</sup> Assumes five (5               | 6) employees o | n-site once proje | ect is operatio | nal |       |              |     |  |  |

#### PROJECT TRIP DISTRIBUTION

Based on the available regional access points/interchanges and the fact that materials will be transported between the site and the Sand Island harbor area, all heavy trucks are expected to use the H-2 Freeway and turn right onto Ka Uka Boulevard from the H-2 Northbound Off-Ramp in order to access the site under Access Option 1. Alternatively under Access Option 2, trucks would use ewa-bound Kamehameha Highway and turn right onto Waihona Street to get to the site and return using the opposite movements, Construction workers and employees are expected to come from all over the island to travel to the proposed solar farm, and the assumed trip distribution is listed below:

- To/From the north—20%
- To/From the west—40%
- To/From the east—40%

The trip distribution percentages were applied to the estimated trip generation and assigned to the surrounding roadway network in order to assess any potential traffic impacts.

Ms. Nicola Doss August 1, 2014 Page 8 of 15

# INTERSECTION OPPRATIONS ANALYSIS

The analysis of roadway operations performed for this study is based upon procedures presented in the *Highway Capacity Manual* (HCM), published by the Transportation Research Board. The operations of roadway facilities are described with the term level of service (LOS). LOS is a qualitative description of traffic flow based on such factors as speed, travel time, delay, and freedom to maneuver. Six levels are defined from LOS A, with the least congested operating conditions, to LOS F, with the most congested operating conditions. LOS E represents "atcapacity" operations. Operations are designated as LOS F when volumes exceed capacity, resulting in stop-and-go conditions. The computerized analysis of intersection operations was performed utilizing the SYNCHRO 8.0 traffic analysis software.

#### SIGNALIZED INTERSECTION ANALYSIS

HCM methodology defines LOS for signalized intersections in terms of delay, or more specifically, average stopped delay per vehicle. Delay is a measure of driver and/or passenger discomfort, frustration, fuel consumption and lost travel time. This technique uses 1,900 vehicles per hour per lane (VPHPL) as the maximum saturation volume of an intersection. This saturation volume is adjusted to account for lane width, on-street parking, pedestrians, traffic composition (i.e., percentage trucks) and shared lane movements (i.e. through and right-turn movements originating from the same lane). The LOS criteria used for this technique are described in **Table 4**.

#### UNSIGNALIZED INTERSECTION ANALYSIS

The HCM outlines methodology for unsignalized intersections, including two-way and all-way stop controlled intersections. The SYNCHRO 8.0 software supports this methodology and was utilized to produce LOS results. The LOS for a two-way stop controlled (TWSC) intersection is determined by the computed control delay and is defined for each minor movement. **Table 5** summarizes the LOS criteria for unsignalized intersections.

| Table 4                                        | - Signalized Intersection Level of Service Criteria                                                                                                                                                                                                                                                               |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Average Stopped Delay<br>Per Vehicle (seconds) | Level of Service (LOS) Characteristics                                                                                                                                                                                                                                                                            |
| <10.0                                          | LOS A describes operations with very low delay. This occurs when progression is extremely favorable, and most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.                                                                                                                  |
| 10.1 – 20 0                                    | LOS B describes operations with generally good progression and/or short cycle lengths.  More vehicles stop than for LOS A, causing higher levels of average delay.                                                                                                                                                |
| 20.1 – 35.0                                    | LOS C describes operations with higher delays, which may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping. |
| 35.1 – 55.0                                    | LOS D describes operations with high delay, resulting from some combination of unfavorable progression, long cycle lengths, or high volumes. The influence of congestion becomes more noticeable, and individual cycle failures are noticeable.                                                                   |
| 55.1 – 80.0                                    | LOS E is considered the limit of acceptable delay. Individual cycle failures are frequent occurrences.                                                                                                                                                                                                            |
| >80.0                                          | LOS F describes a condition of excessively high delay, considered unacceptable to most drivers. This condition often occurs when arrival flow rates exceed the LOS D capacity of the intersection. Poor progression and long cycle lengths may also be major contributing causes to such delay.                   |

| Table 5 – Unsignalized Intersection Level of Service Criteria |                        |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------|------------------------|--|--|--|--|--|--|--|--|--|
| Average Control Delay (sec/veh)                               | Level of Service (LOS) |  |  |  |  |  |  |  |  |  |
| <u>&lt;</u> 10                                                | A                      |  |  |  |  |  |  |  |  |  |
| >10 and <u>&lt;</u> 15                                        | В                      |  |  |  |  |  |  |  |  |  |
| >15 and <u>&lt;2</u> 5                                        | С                      |  |  |  |  |  |  |  |  |  |
| >25 and <u>&lt;</u> 35                                        | D                      |  |  |  |  |  |  |  |  |  |
| >35 and <u>&lt;</u> 50                                        | É                      |  |  |  |  |  |  |  |  |  |
| >50                                                           | F                      |  |  |  |  |  |  |  |  |  |

Ms. Nicola Doss August 1, 2014 Page 10 of 15

#### INTERSECTION IMPACT CRITERIA

The analysis of future conditions compares baseline scenarios with the project opening year to determine whether the project construction traffic is expected to result in a significant impact on the surrounding roadways. Based on previous studies conducted for both the City & County of Honolulu and HDOT, the minimum acceptable operating standard for a signalized intersection is LOS D. If the addition of project traffic is expected to degrade desirable service levels (LOS D or better) to lower than desirable service levels (LOS E or F) then the project is considered to have a project-specific impact. If the LOS for any roadway is LOS E or F without the project and the project adds traffic to this location, then this would be characterized as a cumulative impact. When evaluating intersection approach LOS at any location, other factors should be considered in the analysis, such as traffic volumes, volume-to-capacity (V/C) ratios (which should ideally be less than 1.00), and secondary impacts to pedestrian, bicycle, and transit travel.

For unsignalized intersections, if the addition of project traffic causes the intersection to degrade from LOS D or better to LOS E or F and satisfies the peak hour signal warrant criteria published in the 2009 edition of the *Manual on Uniform Traffic Control Devices for Streets and Highways* (MUTCD), then the impact is considered project-specific. The project is determined to have a significant cumulative impact when it adds traffic to a study location that includes a controlled approach that operates at a lower than desirable level (i.e., LOS E or F), <u>and</u> satisfies the peak hour signal warrant.

#### INTERSECTION LOS RESULTS

The analysis of intersection turning movement volumes was completed for Year 2016 Baseline Conditions without the Project, and for Year 2016 plus Project Conditions with both the Conservative and Employee Shuttle scenarios during the construction period. The results of the intersection LOS analysis are summarized in Table 6, and **Attachment C** includes the detailed LOS calculation worksheets.

| Table 6 – Intersection Operations During Project Construction |              |                      |                  |                            |        |                         |     |  |  |  |  |
|---------------------------------------------------------------|--------------|----------------------|------------------|----------------------------|--------|-------------------------|-----|--|--|--|--|
|                                                               |              | 2016 Baselia         | :Ab              | 2016 Baseline Plus Project |        |                         |     |  |  |  |  |
| Intersection                                                  | Peak<br>Hour | 2016 Baselii<br>Proj |                  | Conser                     | vative | w/ Employee<br>Shuttles |     |  |  |  |  |
|                                                               |              | Delay <sup>1</sup>   | LOS <sup>2</sup> | Delay                      | LOS    | Delay                   | LOS |  |  |  |  |
| Access Option 1                                               |              |                      |                  |                            |        |                         |     |  |  |  |  |
| Ka Uka Blvd/H-2 NB Off                                        | AM           | 10.2                 | В                | 11.1                       | В      | 10.3                    | В   |  |  |  |  |
| Ramp                                                          | PM           | 26.7                 | С                | 63.7                       | E      | 45.8                    | D   |  |  |  |  |
| Ka Uka Blvd/H-2 SB On                                         | AM           | 0.0                  | Α                | 0.1                        | Α      | 0.1                     | Α   |  |  |  |  |
| Ramp*                                                         | PM           | 0.0                  | Α                | 2.2                        | Α      | 0.5                     | Α   |  |  |  |  |
| Ka Uka Bivd/H-2 SB Off                                        | AM           | 31.7                 | С                | 33.2                       | С      | 31.7                    | С   |  |  |  |  |
| Ramp                                                          | PM           | 52.8                 | D                | 52.8                       | D      | 52.8                    | D   |  |  |  |  |
| Access Option 2                                               |              | ·                    |                  |                            |        |                         |     |  |  |  |  |
| Kamehameha Hwy/                                               | AM           | 20.5                 | С                | 20.5                       | С      | 20.5                    | С   |  |  |  |  |
| Waihona St*                                                   | PM           | > 200                | F                | >200                       | F      | >200                    | F   |  |  |  |  |

Source: Fehr & Peers, July 2014

#### POTENTIAL IMPACTS AND IMPROVEMENT OPTIONS

Table 6 above indicates that all three intersections under Access Option 1 would operate acceptably during both peak hours under both construction traffic scenarios with one exception. The Ka Uka Boulevard/H-2 Northbound Off-ramp intersection is projected to operate at LOS E during the PM peak hour under the Conservative Scenario which assumes that all construction workers drive themselves to the construction site and that the majority of truck trips occur during the peak periods. Under this scenario, the project construction would result in a significant, albeit temporary impact to the roadway network because of the degradation in LOS from D or better to E or F. However, the Employee Shuttle scenario, which assumes 95% of construction workers would park off-site and be driven to the construction site via shuttle buses, the intersection is anticipated to operate acceptably at LOS D with 45.8 seconds of delay. These findings indicate that one of two actions should be included in the project's construction traffic management plan prepared by the contractor to maintain desired intersection operating levels at the Ka Uka Boulevard interchange:

<sup>&</sup>lt;sup>1</sup>. Whole intersection weighted average stopped delay expressed in seconds per vehicle for signalized intersections. The worst movement is presented for unsignalized intersections.

<sup>&</sup>lt;sup>2</sup>. LOS calculations performed using the 2000 Highway Capacity Manual (HCM) method.

<sup>&</sup>lt;sup>3</sup>. LOS E or F operations highlighted in **bold.** 

<sup>\*</sup> indicates unsignalized intersection

Ms. Nicola Doss August 1, 2014 Page 12 of 15

- Construction workers should not travel during the PM peak hour, which could be implemented through the work hour schedule, or
- Provide employee shuttle service to and from the site for at least 50 percent of construction workers at an off-site location.

Under Access Option 2, the Kamehameha Highway/Waihona Street intersection is projected to operate acceptably under all scenarios during the AM peak hour, but the left-turn movement out of Waihona Street would operate at LOS F with significant delays with or without project construction in 2016. Even with some gaps provided by the upstream traffic signal at Acacia Road, traffic turning out of Waihona Street will be delayed due to the relatively high volume of ewabound traffic during this peak period and the limited number of gaps. To provide additional gaps especially for large trucks which accelerate slower than passenger vehicles and light duty trucks, a traffic signal would typically be installed required. However, even with signalization, the intersection is expected to operate at a LOS E during the evening peak hour due to increased ewa-bound traffic. Thus, one of two actions should be included in the project's construction traffic management plan prepared by the contractor to minimize impacts to the Kamehameha Highway/Waihona Street access option:

- Outbound heavy truck traffic and employee vehicle trips should be avoided during the PM peak hour through work schedule management, or
- Install a temporary traffic signal at this location. This would have to be coordinated with any access improvements or construction activities that will occur at the Pearl Highlands Transit Center site.

With typical operation of the project site, a total of 5 trips during each peak hour would occur under either access option. This additional traffic would have a negligible effect on intersection turning movement operations at all study locations and the Year 2016 baseline intersection delay and LOS would essentially be unchanged.

# ROADWAY SEGMENT OPERATIONS

In addition to evaluating peak hour intersection operations, it is important to assess the potential impact of construction traffic on all of the access roadway segments leading to the project site. Under Access Option 1, H-2 and Ka Uka Boulevard are higher capacity roadways that include typical lane widths and are built to higher standards than other roadways. Mililani Cemetery Road is a two-lane roadway with lane widths of approximately 12 feet plus shoulder areas along most of the segment between Ka Uka Boulevard and Waiawa Prison Road. Although the prison does

Ms. Nicola Doss August 1, 2014 Page 13 of 15

not generate a significant amount of existing traffic, the addition of truck traffic to all of these facilities is not anticipated to result in any operational or apparent safety issues.

A potential issue is the relatively narrow width and alignment of Waiawa Prison Road, particularly for heavy vehicles transporting construction equipment and materials. The width of this roadway varies but is roughly 20 feet along several sections between the cemetery road and the site access driveway. In addition, there are several curves where sight distance and the adjacent shoulder width are limited. While this is not an issue for typical passenger vehicles or light duty trucks, it is possible that large trucks may conflict with opposing traffic on this roadway by reducing the available width. While the estimated volume of project-generated truck traffic is 42 trips over the course of a day (i.e., 21 trucks traveling in and out of the site), this activity would occur over an extended period of time and there would be some new drivers on this road where driving conditions may not be familiar to them.

It is important to note that construction activities have recently occurred in the area that added heavy truck traffic to Waiawa Prison Road and the cemetery road. This activity included the decommissioning of several reservoirs that required trucks to transport heavy material and water along these roadways. For a four month period, at least two heavy trucks would make daily rounds on and off Waiawa Prison Road without incident. No significant operational or safety issues were identified by Kamehameha Schools' representatives who monitored the construction activities.

To minimize the potential for conflicts and to maintain adequate traffic operations, the contractor should prepare a construction traffic management plan that includes the following:

- Signage between the Ka Uka Boulevard interchange and the site access driveway on Waiawa Prison Road that trucks are traveling and entering/exiting the roadway.
- Ensure that adequate sight distance is provided for drivers on Waiawa Prison Road approaching the project site driveway.
- Removal of vegetation including tree limbs and other impediments to allow trucks to stay to the far right of the traveled way on both the cemetery road and Waiawa Prison Road (if needed).
- Manual traffic control on Waiawa Prison Road to manage construction and prison traffic and to minimize conflicts. This could include the use of radios, flagpersons, and/or temporary signals and lighting to assist with the control of vehicles and the provision of adequate sight distance (as needed).

Ms. Nicola Doss August 1, 2014 Page 14 of 15

Under Access Option 2, both Kamehameha Highway and Waihona Street include typical lane widths and are built to urban standards. Both facilities are currently used by industrial-related traffic and no special operational or safety concerns were identified for either roadway segment. Temporary manual traffic control may be required at the site driveway intersection on Waihona Street, but only when a large volume of trucks is expected to arrive or depart at one time. The need for this control should be included in the construction traffic management plan.

#### Conclusion

The proposed project will generate a negligible amount of vehicle traffic when the solar farm is fully constructed and operational. During construction, the site is expected to generate between 66 and 342 daily vehicle trips, and between 18 and 168 vehicle trips during each peak hour depending on the level of employee shuttle service provided and the number of truck trips allowed during the AM and PM peak hours. According to the project sponsor SunEdison, construction activity is planned occur for up to a 12-month period and would only result in temporary traffic impacts. A detailed construction traffic management plan should be prepared prior to the start of construction to ensure that the project has a minimal impact to the transportation system during the construction period.

Based on the evaluation presented in this report, both potential points of access are sufficient for the anticipated construction traffic required to build the solar project provided measures are implemented to mitigate the temporary impacts. These measures include a construction traffic management plan that minimizes traffic during the peak commute hours to the extent possible, ensures adequate sight distance at all driveway access points, and informs other drivers on the roadway of construction activities and heavy vehicle traffic. While the evaluation looked at the use of each access option independently, it would be possible to use both access points (or other feasible access points) during construction to distribute project-generated traffic and minimize the temporary impacts at any one location.

Ms. Nicola Doss August 1, 2014 Page 15 of 15

We appreciate the opportunity to assist you with this project. Please let us know if you have any questions on the information in this report.

Sincerely,

FEHR & PEERS

Sohrab Rashid, TE

D. Solub Rold.

Principal

Anjuli Bakhru

**Transportation Engineer** 

SD14-0125

#### **Attachment:**

Attachment A - Proposed Project Site Plan

Attachment B – Trip Generation Estimates

Attachment C – Intersection Analysis – Project Construction



### **LEGEND**



Photovoltaic Locations

Agricultural District

Conservation District



Source: SunEdison (2014), State Land Use Commission (2014)
Disclaimer: This Graphic has been prepared for general planning purposes only and should not be used for boundary Interpretations or other spatial analysis.

# KS Exhibit 8 Errata (filed 6/20/14) Phasing Plan

KAMEHAMEHA SCHOOLS WAIAWA MOTION TO AMEND





Table 4: Project Trip Generation Calculations - Conservative

| ARE THE DESIGNATION OF THE PARTY OF THE PARTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                 | 12 E (40)             | E STATE         | of the last       | Weekda                | y Trip Ge      | neration |           | O STATE OF |         | 37000                   | State Lines    | DOMESTIC OF THE PROPERTY OF THE PARTY OF THE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|-----------------------|-----------------|-------------------|-----------------------|----------------|----------|-----------|------------|---------|-------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 | 1000                  | Posk            | Hours             |                       |                | 200      |           | Off-Pat    | k Hours | - Nome                  | STREET, STREET |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Trip Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Delly<br>Trips | (6              | eak Hour<br>AM - 7 AM | 0               | (4                | sak Hour<br>PM - 5 Ph | )              | (        | e Olf-Per | M)         | (       | ghttime T<br>5 PM - 6 A |                | Hotes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total          | Total           | IN                    | OUT             | Total             | N.                    | OUT            | Total    | IN        | OUT        | Total   | IN                      | OUT            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Construction Phase*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                 |                       |                 |                   |                       |                |          |           |            |         |                         | . 26 5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Automobile Trips:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                 |                       |                 |                   |                       | S. mary A.     | 13000    |           |            |         |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Personal Vehicles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300            | 150             | 150                   | 0               | 150               | 0                     | 150            | 0        | 0         | 0          | 0       | 0                       | 0              | 100% of all construction employees will travel by personal vehicle to the project site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Automobile Trips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300            | 150             | 150                   | 0               | 150               | 0                     | 150            | 0        | 0         | 0          | 0       | 0                       | 0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Heavy Vehicle Trips:<br>Shuttle Bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0              | _               | n                     | n               | 0                 | 0                     | 0              |          |           | 0          | ,       | 0                       | 0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Equipment Deliveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20             | 10              | 10                    | 0               | 10                | 0                     | 10             | 0        | 0         | 0          | 0       | 0                       | 0              | Includes delivery of solar panel and electrical equipment. Assumes that no deliveries are made at night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Employee Food Daliveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6              | 0               | 0                     | 0               | 0                 | 0                     | 0              | 6        | 3         | 3          | 0       | 0                       | 0              | Food doliveries to arrive during daylime off-peak hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Excavation, Debns and Material Hauling. Misc Deliveries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16             | 8               | 8                     | 0               | 8                 | 0                     | 8              | 0        | 0         | 0          | 0       | 0                       | 0              | Includes miscellaneous doliveries, excavation, debris, and materials hauling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Total Heavy Vehicle Trips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42             | 18              | 18                    | 0               | 18                | 0                     | 18             | 6        | 3         | 3          | 0       | 0                       | 0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Construction Phase Trips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 342            | 168             | 168                   | 0               | 168               | ٥                     | 168            | 6        | 3         | 3          |         | 0                       | 0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Operational Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -              | -               |                       |                 | n marcrost        |                       | _              |          | -         |            |         |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Employee Trips (Individual Auto Trips)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10             | 5               | 5                     | 0               | - 5               | - 0                   | 5              | ,        | 0         | 0          | ,       |                         |                | Employee Trips Based Upon Pook Stalling Levels of 5 Full Time Employees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Operational Phase Trips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 5               | 5                     | ŏ               | 5                 | ŏ                     | 5              | ŏ        | ŏ         | ő          | ŏ       | 0                       | o              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Commencion Phase Trip Gregoration Assumptions:  Based upon peak construction phase of a 58 Magainst Facility over a 1-Year construction penud. If the pro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | et Construct   | norrpennd leste | to longer then t      | t year, the nur | ther of peak hour | to aprid be           | slightly house |          |           | 5          |         |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Construction Phase top generation to based upon a total environce of 150 employees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                 |                       |                 |                   |                       | 10.20016       |          |           |            | l .     |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *Automobies are FiRMA Class 1 - 3 vehicles. Heavy vehicles are FIRMA Class 4 and above vehicles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                 |                       |                 |                   |                       |                |          |           |            |         |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                 |                       |                 |                   |                       |                |          |           |            | ŀ       |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Marine Ma |                |                 |                       |                 |                   |                       |                |          |           |            |         |                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 4: Project Trip Generation Calculations - Employee Shuttles and Off-Peak Deliveries

| COLORS CHARGOS AND STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1000            | TO ROOM          | physics.               |                | State of the last | Weekd                                                                                            | ley Trip G   | eneration    | 1000       |        | ALC: NO | THE STATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -       |                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|------------------------|----------------|-------------------|--------------------------------------------------------------------------------------------------|--------------|--------------|------------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 802.0            | SELVE                  | Peak           | Houre             |                                                                                                  |              | <b>BEECE</b> |            | Off-Pe | k Hours | No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other party of the Concession, Name of Street, or other pa | Maria P |                                                                                                                                                                                         |
| Project Trip Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ou⊞y<br>Trips   |                  | esk Hour<br>I AM - 7 A | (M)            | (4                | Peak Hour Trips Daytime Off-Peak Trips Nightlims Trips (4 PM - 5 PM) (7 AM - 4 PM) (5 PM - 8 AM) |              | Notes        |            |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                         |
| GIVANIA SATE AND A SAME AS A SAME OF THE SAME AS A SAME OF THE SAM | Total           | Total            | IN .                   | OUT            | Total             | - IN                                                                                             | OUT          | Total        | IN         | OUT    | Total   | IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OUT     |                                                                                                                                                                                         |
| Project Construction Phase*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                  |                        |                |                   | -                                                                                                |              |              |            |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                         |
| Automobile Trips:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -               | _                |                        |                |                   |                                                                                                  |              |              |            |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                         |
| Personal Vehicles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16              | 8                | 8                      | 0              | 8                 | 0                                                                                                | 8            | 0            | 0          | 0      | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       | 5% of all construction employees will travel by personal vehicle to the project site.                                                                                                   |
| Total Automobile Trips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16              | 8                | . 8                    | 0              | 8                 | 0                                                                                                | 8            | 0            | 0          | 0      | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       |                                                                                                                                                                                         |
| Meavy Vehicle Tripa:<br>Shuttle Bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8               | 4                | 4                      | 0              | 4                 | 0                                                                                                | 4            | 0            | 0          | 0      | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       | 95% of all construction employees will travel by shuttle bus to the project site. 4 buses arrive ove 1 hour period in the morning and depart in the evening transporting 150 employees. |
| Equipment Deliveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20              | 4                | 4                      | 0              | 4                 | 0                                                                                                | 4            | 8            | 4          | 4      | 4       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2       | includes delivery of solar panel and electrical equipment. Assumes that very few deliveries are made at night.                                                                          |
| Employee Food Delivenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6               | 0                | 0                      | 0              | 0                 | 0                                                                                                | 0            | 6            | 3          | 3      | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       | Food deliveries to arrive during daytime off-peak hours                                                                                                                                 |
| Excavation, Debris and Material Hauling, Misc Deliveries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16              | 3                | 3                      | 0              | 2                 | 0                                                                                                | 2            | 11           | 5.5        | 6      | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       | Includes miscellaneous deliveries, excavation, debris, and materials hauling.                                                                                                           |
| Total Heavy Vehicle Trips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50              | 11               | 11                     | 0              | 10                | 0                                                                                                | 10           | 25           | 13         | 13     | 4       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2       |                                                                                                                                                                                         |
| Total Construction Phase Trips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66              | 19               | 19                     | 0              | 18                | 0                                                                                                | 18           | 25           | 13         | 13     | 4       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2       |                                                                                                                                                                                         |
| Project Operational Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                  |                        | -              |                   |                                                                                                  |              |              |            |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | <u> </u>                                                                                                                                                                                |
| Employee Trips (Individual Auto Trips)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 40            | -                |                        | -              | -                 |                                                                                                  | 1 2          | 120          | <u>0</u> : | 020    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6206    | Employee Trips Based Upon Peak Staffing Levels of 5 Full Time Employees                                                                                                                 |
| Total Operational Phase Trips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10<br>10        | 5                | 5                      | 0              | 5                 | 0                                                                                                | 5            | 0            | 0          | 0      | 0       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0       |                                                                                                                                                                                         |
| Sometimes Prime TVo Generative Advancement.  Pleased upon peak construction phase of a 50 Magains R Facility Giver & 1 Ye ar construction partner. # the prime to the prime of | jed construct   | ton period lasts | Stir longer their      | I year the rue | nber of peak h    | our <b>Wa</b> re would                                                                           | d to sightly | -            |            |        |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                                                                                                                                         |
| Project Communicati Phise hip generation is hesed upon a total workforce of 150 employage.  *Automobies are FHWA Class 1:3 vehicles Heevy vehicles are FHWA Class 4 and above vehicles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                  |                        |                |                   |                                                                                                  | Stock Will   |              |            |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                         |
| ¥streeted number of shuttle bus ways is based upon 95% of employees transported № the site is shuttle w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ch & single bis | rapacey of 45    | passengers             |                |                   |                                                                                                  |              |              |            |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | D-JECKS - EN SELSK JAKE FOODSJEDING - SERERONES ( DEWSWOODES) PROCES                                                                                                                    |

|                                 | 1                                      | 4               | †            | <i>p</i>     | 1           | <b>+</b>   |     |
|---------------------------------|----------------------------------------|-----------------|--------------|--------------|-------------|------------|-----|
| Movement                        | WBL                                    | WBR             | NBT          | NBR          | SBL         | SBT        |     |
| Lane Configurations             | T                                      | 7               | ተተ           | 7            |             | र्स        |     |
| Volume (veh/h)                  | 125                                    | 60              | 747          | 301          | 0           | 1          |     |
| Sign Control                    | Stop                                   |                 | Free         |              |             | Free       |     |
| Grade                           | 0%                                     |                 | 0%           |              |             | 0%         |     |
| Peak Hour Factor                | 0.92                                   | 0.92            | 0.92         | 0.92         | 0.92        | 0.92       |     |
| Hourly flow rate (vph)          | 136                                    | 65              | 812          | 327          | 0           | 1          |     |
| Pedestrians                     |                                        |                 |              |              |             |            |     |
| Lane Width (ft)                 |                                        |                 |              |              |             |            |     |
| Walking Speed (ft/s)            |                                        |                 |              |              |             |            |     |
| Percent Blockage                |                                        |                 |              |              |             |            |     |
| Right turn flare (veh)          |                                        |                 |              |              |             |            |     |
| Median type                     |                                        |                 | None         |              |             | None       |     |
| Median storage veh)             |                                        |                 |              |              |             |            |     |
| Upstream signal (ft)            |                                        |                 |              |              |             |            |     |
| pX, platoon unblocked           |                                        | 125             |              |              |             |            |     |
| vC, conflicting volume          | 813                                    | 406             |              |              | 1139        |            |     |
| vC1, stage 1 conf vol           |                                        |                 |              |              |             |            |     |
| vC2, stage 2 conf vol           | 040                                    | 400             |              |              | 4400        |            |     |
| vCu, unblocked vol              | 813                                    | 406             |              |              | 1139        |            |     |
| tC, single (s)                  | 6.8                                    | 6.9             |              |              | 4.1         |            |     |
| tC, 2 stage (s)                 | 2.5                                    | 2.2             |              |              | 0.0         |            |     |
| tF (s)                          | 3.5                                    | 3.3             |              |              | 2.2         |            |     |
| p0 queue free %                 | 57<br>316                              | 89<br>594       |              |              | 100<br>609  |            |     |
| cM capacity (veh/h)             |                                        |                 |              |              |             |            |     |
| Direction, Lane #               | WB 1                                   | WB 2            | NB 1         | NB 2         | NB 3        | SB 1       |     |
| Volume Total                    | 136                                    | 65              | 406          | 406          | 327         | 1          |     |
| Volume Left                     | 136                                    | 0<br><b>6</b> 5 | 0            | 0<br>0       | 0<br>327    | 0          |     |
| Volume Right<br>cSH             | 0<br>316                               | 594             | 0<br>4700    |              | 327<br>1700 | 0<br>609   |     |
| Volume to Capacity              | 0.43                                   | 0.11            | 1700<br>0.24 | 1700<br>0.24 | 0.19        | 0.00       |     |
| Queue Length 95th (ft)          | 52                                     | 9               | 0,24         | 0.24         | 0.19        | 0.00       |     |
| Control Delay (s)               | 24.7                                   | 11.8            | 0.0          | 0.0          | 0.0         | 0.0        |     |
| Lane LOS                        | 24.7<br>C                              | В               | 0.0          | 0.0          | 0.0         | 0.0        |     |
| Approach Delay (s)              | 20.5                                   | ь               | 0.0          |              |             | 0.0        |     |
| Approach LOS                    | 20,5<br>C                              |                 | 0.0          |              |             | 0.0        |     |
| Intersection Summary            |                                        |                 |              |              | 100131      | MAS I      |     |
| Average Delay                   | ************************************** | 8               | 3.1          |              | 9.50        |            |     |
| Intersection Capacity Utilizati | on                                     |                 | 34.2%        | IC           | U Level o   | of Service | e A |
| Analysis Period (min)           |                                        |                 | 15           |              |             |            |     |

|                                   | A    | <b>→</b> | *     | 1     | 4-         | 4          | 1      | †    | P     | 1     | <b></b> | 1    |
|-----------------------------------|------|----------|-------|-------|------------|------------|--------|------|-------|-------|---------|------|
| Movement                          | EBL  | EBT      | EBR   | WBL   | WBT        | WBR        | NBL    | NBT  | NBR   | SBL   | SBT     | SBR  |
| Lane Configurations               |      | <b>^</b> |       | 7     | ተተ         |            | ሻ      |      | 7     |       | र्भ     | 14   |
| Volume (vph)                      | 0    | 914      | 56    | 256   | 356        | 0          | 30     | 0    | 473   | 12    | 171     | 207  |
|                                   | 1900 | 1900     | 1900  | 1900  | 1900       | 1900       | 1900   | 1900 | 1900  | 1900  | 1900    | 1900 |
| Total Lost time (s)               |      | 4.0      |       | 4.0   | 4.0        |            | 4.0    |      | 4.0   |       | 4.0     | 4.0  |
| Lane Util. Factor                 |      | 0.95     |       | 1.00  | 0.95       |            | 1.00   |      | 1.00  |       | 1.00    | 1.00 |
| Frt_                              |      | 0.99     |       | 1.00  | 1.00       |            | 1.00   |      | 0.85  |       | 1.00    | 0.85 |
| FIt Protected                     |      | 1.00     |       | 0.95  | 1.00       |            | 0.95   |      | 1.00  |       | 1.00    | 1.00 |
| Satd. Flow (prot)                 |      | 3508     |       | 1770  | 3539       |            | 1770   |      | 1583  |       | 1857    | 1583 |
| FIt Permitted                     |      | 1.00     |       | 0.95  | 1.00       |            | 0.95   |      | 1.00  |       | 1.00    | 1.00 |
| Satd. Flow (perm)                 |      | 3508     |       | 1770  | 3539       |            | 1770   |      | 1583  |       | 1857    | 1583 |
| ·                                 | 0.92 | 0.92     | 0.92  | 0.92  | 0.92       | 0.92       | 0.92   | 0.92 | 0.92  | 0.92  | 0.92    | 0.92 |
| Adj. Flow (vph)                   | 0    | 993      | 61    | 278   | 387        | 0          | 33     | 0    | 514   | 13    | 186     | 225  |
| RTOR Reduction (vph)              | 0    | 4        | 0     | 0     | 0          | 0          | 0      | 0    | 460   | 0     | 0       | 190  |
| Lane Group Flow (vph)             | 0    | 1050     | 0     | 278   | 387        | 0          | 33     | 0    | 54    | 0     | 199     | 35   |
| Tum Type                          |      | NA       |       | Prot  | NA         |            | Prot   |      | Perm  | Split | NA      | Perm |
| Protected Phases                  |      | 4        |       | 3     | 8          |            | 5      |      |       | 6     | 6       |      |
| Permitted Phases                  |      |          |       |       |            |            |        |      | 5     |       |         | 6    |
| Actuated Green, G (s)             |      | 32.4     |       | 18.3  | 54.7       |            | 9.4    |      | 9.4   |       | 13.9    | 13.9 |
| Effective Green, g (s)            |      | 32.4     |       | 18.3  | 54.7       |            | 9.4    |      | 9.4   |       | 13.9    | 13.9 |
| Actuated g/C Ratio                |      | 0.36     |       | 0.20  | 0.61       |            | 0.10   |      | 0.10  |       | 0.15    | 0.15 |
| Clearance Time (s)                |      | 4.0      |       | 4.0   | 4.0        |            | 4.0    |      | 4.0   |       | 4.0     | 4.0  |
| Vehicle Extension (s)             |      | 3.0      |       | 3.0   | 3.0        |            | 3.0    |      | 3.0   |       | 3.0     | 3.0  |
| Lane Grp Cap (vph)                |      | 1262     |       | 359   | 2150       |            | 184    |      | 165   |       | 286     | 244  |
| v/s Ratio Prot                    |      | c0.30    |       | c0.16 | 0.11       |            | 0.02   |      |       |       | c0.11   |      |
| v/s Ratio Perm                    |      |          |       |       |            |            |        |      | c0.03 |       |         | 0.02 |
| v/c Ratio                         |      | 0.83     |       | 0.77  | 0.18       |            | 0.18   |      | 0.33  |       | 0.70    | 0.14 |
| Uniform Delay, d1                 |      | 26.3     |       | 33.9  | 7.8        |            | 36.8   |      | 37.4  |       | 36.0    | 32.9 |
| Progression Factor                |      | 1.00     |       | 1.00  | 1.00       |            | 1.00   |      | 1.00  |       | 1.00    | 1.00 |
| incremental Delay, d2             |      | 4.8      |       | 10.0  | 0.0        |            | 0.5    |      | 1.2   |       | 7.2     | 0.3  |
| Delay (s)                         |      | 31.2     |       | 43.9  | 7.8        |            | 37.2   |      | 38.5  |       | 43.2    | 33.2 |
| Level of Service                  |      | С        |       | D     | Α          |            | D      |      | D     |       | D       | С    |
| Approach Delay (s)                |      | 31.2     |       |       | 22.9       |            |        | 38.4 |       |       | 37.9    |      |
| Approach LOS                      |      | С        |       |       | С          |            |        | D    |       |       | D       |      |
| Intersection Summary              |      |          |       |       | C. C.      | C. Carlo   |        | 200  |       |       |         |      |
| HCM 2000 Control Delay            |      |          | 31.7  | H     | CM 2000    | Level of S | ervice |      | С     |       |         |      |
| HCM 2000 Volume to Capacity ra    | atio |          | 0.73  |       |            |            |        |      |       |       |         |      |
| Actuated Cycle Length (s)         |      |          | 90.0  |       | um of lost |            |        |      | 16.0  |       |         |      |
| Intersection Capacity Utilization |      |          | 76.0% | IC    | U Level o  | of Service |        |      | D     |       |         |      |
| Analysis Period (min)             |      |          | 15    |       |            |            |        |      |       |       |         |      |
| c Critical Lane Group             |      |          |       |       |            |            |        |      |       |       |         |      |

2016 Baseline AM Synchro 8 Report Page 2

|                               | ١           | <b>→</b> | •     | 1       | <b>←</b>   | 4        | 4       | †    | -    | 1    | <b>+</b> | 1    |
|-------------------------------|-------------|----------|-------|---------|------------|----------|---------|------|------|------|----------|------|
| Movement                      | EBL         | EBT      | EBR   | WBL     | WBT        | WBR      | NBL     | NBT  | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations           | 7           | <b>↑</b> |       | 3903    | <b>1</b>   |          | 7       | 4    |      |      |          |      |
| Volume (vph)                  | 317         | 34       | 0     | 0       | 8          | 1        | 610     | 0    | 27   | 0    | 0        | 0    |
| Ideal Flow (vphpi)            | 1900        | 1900     | 1900  | 1900    | 1900       | 1900     | 1900    | 1900 | 1900 | 1900 | 1900     | 1900 |
| Total Lost time (s)           | 4.0         | 4.0      |       |         | 4.0        |          | 4.0     | 4.0  |      |      |          |      |
| Lane Util. Factor             | 1.00        | 1.00     |       |         | 0.95       |          | 0.95    | 0.95 |      |      |          |      |
| Frt                           | 1.00        | 1.00     |       |         | 0.98       |          | 1.00    | 0.99 |      |      |          |      |
| Flt Protected                 | 0.95        | 1.00     |       |         | 1.00       |          | 0.95    | 0.96 |      |      |          |      |
| Satd_Flow (prot)              | 1770        | 1863     |       |         | 3486       |          | 1681    | 1671 |      |      |          |      |
| Flt Permitted                 | 0.75        | 1.00     |       |         | 1.00       |          | 0.95    | 0.96 |      |      |          |      |
| Satd. Flow (perm)             | 1398        | 1863     |       |         | 3486       |          | 1681    | 1671 |      |      |          |      |
| Peak-hour factor, PHF         | 0.92        | 0.92     | 0.92  | 0.92    | 0.92       | 0.92     | 0.92    | 0.92 | 0.92 | 0.92 | 0.92     | 0.92 |
| Adj. Flow (vph)               | 345         | 37       | 0     | 0       | 9          | 1        | 663     | 0    | 29   | 0    | 0        | 0    |
| RTOR Reduction (vph)          | 0           | 0        | 0     | 0       | 1          | 0        | 0       | 11   | 0    | 0    | 0        | 0    |
| Lane Group Flow (vph)         | 345         | 37       | 0     | 0       | 9          | 0        | 345     | 336  | 0    | 0    | 0        | 0    |
| Tum Type                      | Perm        | NA       |       |         | NA         |          | Perm    | NA   |      |      |          |      |
| Protected Phases              |             | 4        |       |         | 8          |          |         | 2    |      |      |          |      |
| Permitted Phases              | 4           |          |       |         |            |          | 2       |      |      |      |          |      |
| Actuated Green, G (s)         | 15.6        | 15.6     |       |         | 15.6       |          | 16.7    | 16.7 |      |      |          |      |
| Effective Green, g (s)        | 15.6        | 15.6     |       |         | 15.6       |          | 16.7    | 16.7 |      |      |          |      |
| Actuated g/C Ratio            | 0.39        | 0.39     |       |         | 0.39       |          | 0.41    | 0.41 |      |      |          |      |
| Clearance Time (s)            | 4.0         | 4.0      |       |         | 4.0        |          | 4.0     | 4.0  |      |      |          |      |
| Vehicle Extension (s)         | 3.0         | 3.0      |       |         | 3.0        |          | 3.0     | 3.0  |      |      |          |      |
| Lane Grp Cap (vph)            | 541         | 721      |       |         | 1349       |          | 696     | 692  | -    |      |          |      |
| v/s Ratio Prot                |             | 0.02     |       |         | 0.00       |          |         |      |      |      |          |      |
| v/s Ratio Perm                | c0.25       |          |       |         |            |          | c0.21   | 0.20 |      |      |          |      |
| v/c Ratio                     | 0.64        | 0.05     |       |         | 0.01       |          | 0.50    | 0.49 |      |      |          |      |
| Uniform Delay, d1             | 10.1        | 7.7      |       |         | 7.6        |          | 8.7     | 8.6  |      |      |          |      |
| Progression Factor            | 1.00        | 1.00     |       |         | 1.00       |          | 1.00    | 1.00 |      |      |          |      |
| Incremental Delay, d2         | 2.5         | 0.0      |       |         | 0.0        |          | 0.6     | 0.5  |      |      |          |      |
| Delay (s)                     | 12.5        | 7.8      |       |         | 7.6        |          | 9.3     | 9.2  |      |      |          |      |
| Level of Service              | В           | Α        |       |         | A          |          | Α       | Α    |      |      |          |      |
| Approach Delay (s)            |             | 12.1     |       |         | 7.6        |          |         | 9.2  |      |      | 0.0      |      |
| Approach LOS                  |             | В        |       |         | Α          |          |         | Α    |      |      | Α        |      |
| Intersection Summary          | E PER L     |          |       | NAME OF | 4444       |          |         |      |      |      |          | HAR  |
| HCM 2000 Control Delay        |             |          | 10.2  | Н       | CM 2000    | Level of | Service |      | В    |      |          |      |
| HCM 2000 Volume to Capa       | acity ratio |          | 0.56  |         |            |          |         |      |      |      |          |      |
| Actuated Cycle Length (s)     | - 49        |          | 40.3  | Sı      | ım of lost | time (s) |         |      | 8.0  |      |          |      |
| Intersection Capacity Utiliza | ation       |          | 53.3% |         | U Level o  |          | 1       |      | A    |      |          |      |
| Analysis Period (min)         |             |          | 15    |         |            |          |         |      |      |      |          |      |
| c Critical Lane Group         |             |          |       |         |            |          |         |      |      |      |          |      |
|                               |             |          |       |         |            |          |         |      |      |      |          |      |

|                                                                                                                 | <b>→</b>          | >        | 1                  | +                       | 1               | P          |   |
|-----------------------------------------------------------------------------------------------------------------|-------------------|----------|--------------------|-------------------------|-----------------|------------|---|
| Movement                                                                                                        | EBT               | EBR      | WBL                | WBT                     | NBL             | NBR        |   |
| Lane Configurations Volume (veh/h) Sign Control Grade                                                           | 351<br>Free<br>0% | 1048     | <b>1</b> 5         | ↑↑<br>612<br>Free<br>0% | 0<br>Stop<br>0% | 0          |   |
| Peak Hour Factor                                                                                                | 0.92              | 0.92     | 0.92               | 0.92                    | 0.92            | 0.92       |   |
| Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) | 382               | 1139     | 5                  | 665                     | 0               | 0          |   |
| Median type Median storage veh)                                                                                 | None              |          |                    | None                    |                 |            |   |
| Upstream signal (ft)<br>pX, platoon unblocked                                                                   |                   |          |                    | 1319                    |                 |            |   |
| vC, conflicting volume<br>vC1, stage 1 conf vol<br>vC2, stage 2 conf vol                                        |                   |          | 1521               |                         | 725             | 382        |   |
| vCu, unblocked vol<br>tC, single (s)<br>tC, 2 stage (s)                                                         |                   |          | 1521<br>4.1        |                         | 725<br>6.8      | 382<br>6.9 |   |
| tF (s)                                                                                                          |                   |          | 2.2                |                         | 3.5             | 3.3        |   |
| p0 queue free %                                                                                                 |                   |          | 99                 |                         | 100             | 100        |   |
| cM capacity (veh/h)                                                                                             |                   |          | 435                |                         | 356             | 616        |   |
| Direction, Lane # Volume Total                                                                                  | EB 1              | EB 2     | WB 1               | WB 2                    | WB 3            |            |   |
| Volume Left                                                                                                     | 761<br>0          | 759<br>0 | 5<br>5             | 333<br>0                | 333<br>0        |            |   |
| Volume Right                                                                                                    | 380               | 759      | Ö                  | ő                       | ő               |            |   |
| cSH                                                                                                             | 1700              | 1700     | 435                | 1700                    | 1700            |            |   |
| Volume to Capacity                                                                                              | 0.45              | 0.45     | 0.01               | 0.20                    | 0.20            |            |   |
| Queue Length 95th (ft)                                                                                          | 0                 | 0        | 1                  | 0                       | 0               |            |   |
| Control Delay (s)                                                                                               | 0.0               | 0.0      | 13.4               | 0.0                     | 0.0             |            |   |
| Lane LOS<br>Approach Delay (s)<br>Approach LOS                                                                  | 0.0               |          | B<br>0.1           |                         |                 |            |   |
| Intersection Summary                                                                                            |                   | Ø iso    |                    |                         | 191             |            |   |
| Average Delay<br>Intersection Capacity Utilization<br>Analysis Period (min)                                     | n                 |          | 0.0<br>53.3%<br>15 | IC                      | U Level o       | f Service  | A |

|                                                          | 1                | 4           | †           | P         | 1          | <b>↓</b>  |   |
|----------------------------------------------------------|------------------|-------------|-------------|-----------|------------|-----------|---|
| Movement                                                 | WBL              | WBR         | NBT         | NBR       | SBL        | SBT       |   |
| Lane Configurations                                      | 1                | 7           | <b>十</b> 个  | 14        |            | र्स       |   |
| Volume (veh/h)                                           | 125              | 60          | 747         | 505       | 0          | 1         |   |
| Sign Control                                             | Stop             |             | Free        |           |            | Free      |   |
| Grade                                                    | 0%               |             | 0%          |           |            | 0%        |   |
| Peak Hour Factor                                         | 0.92             | 0.92        | 0.92        | 0.92      | 0.92       | 0.92      |   |
| Hourly flow rate (vph)                                   | 136              | 65          | 812         | 549       | 0          | 1         |   |
| Pedestrians                                              |                  |             |             |           |            |           |   |
| Lane Width (ft)                                          |                  |             |             |           |            |           |   |
| Walking Speed (ft/s)                                     |                  |             |             |           |            |           |   |
| Percent Blockage                                         |                  |             |             |           |            |           |   |
| Right turn flare (veh)                                   |                  |             |             |           |            |           |   |
| Median type                                              |                  |             | None        |           |            | None      |   |
| Median storage veh)                                      |                  |             |             |           |            |           |   |
| Upstream signal (ft)                                     |                  |             |             |           |            |           |   |
| pX, platoon unblocked                                    | 0.40             |             |             |           |            |           |   |
| vC, conflicting volume                                   | 813              | 406         |             |           | 1361       |           |   |
| vC1, stage 1 conf vol                                    |                  |             |             |           |            |           |   |
| vC2, stage 2 conf vol                                    | 040              | 400         |             |           |            |           |   |
| vCu, unblocked vol                                       | 813              | 406         |             |           | 1361       |           |   |
| tC, single (s)                                           | 6.8              | 6.9         |             |           | 4.1        |           |   |
| tC, 2 stage (s)                                          | 2.5              | 2.2         |             |           | 0.0        |           |   |
| F (s)                                                    | 3.5<br><b>57</b> | 3.3         |             |           | 2.2        |           |   |
| p0 queue free %<br>cM capacity (veh/h)                   | 316              | 89<br>594   |             |           | 100<br>501 |           |   |
|                                                          |                  |             |             |           |            |           |   |
| Direction, Lane #                                        | WB 1             | WB 2        | NB 1        | NB 2      | NB 3       | SB 1      |   |
| /olume Left                                              | 136<br>136       | 65          | 406         | 406       | 549        | 1         |   |
| /olume Right                                             |                  | 0<br>65     | 0           | 0         | 0<br>549   | 0         |   |
| SH                                                       | 0<br>316         | 594         | 0<br>1700   | 0<br>1700 | 1700       | 0<br>501  |   |
| Volume to Capacity                                       | 0.43             | 0.11        | 0.24        | 0.24      | 0.32       | 0.00      |   |
| Queue Length 95th (ft)                                   | 52               | 9           |             | 0.24      | 0.32       |           |   |
| Control Delay (s)                                        | 24.7             | 11.8        | 0<br>0.0    | 0.0       | 0.0        | 0<br>0.0  |   |
| Lane LOS                                                 | 24.1<br>C        | - 11.0<br>B | 0.0         | 0.0       | U.U        | 0.0       |   |
| Approach Delay (s)                                       | 20.5             | В           | 0.0         |           |            | 0.0       |   |
| Approach LOS                                             | 20.5<br>C        |             | 0.0         |           |            | U.U       |   |
| ntersection Summary                                      |                  |             |             |           | SERVE.     |           |   |
| Average Delay                                            |                  |             | 2.6         |           |            |           |   |
| ntersection Capacity Utilizatio<br>Analysis Period (min) | n                |             | 41.3%<br>15 | IC        | U Level o  | f Service | A |

|                                   | ۶    | <b>→</b> | *     | 1     | 4-         | 4          | 4      | †    | -     | 1       | ţ     | 1      |
|-----------------------------------|------|----------|-------|-------|------------|------------|--------|------|-------|---------|-------|--------|
| Movement                          | EBL  | EBT      | EBR   | WBL   | WBT        | WBR        | NBL    | NBT  | NBR   | SBL     | SBT   | SBR    |
| Lane Configurations               |      | <b>1</b> |       | 79    | <b>^</b>   |            | F      |      | 7     |         | ર્ન   | 7      |
| Volume (vph)                      | 0    | 914      | 56    | 256   | 356        | 0          | 30     | 0    | 473   | 42      | 171   | 207    |
| Ideal Flow (vphpl)                | 1900 | 1900     | 1900  | 1900  | 1900       | 1900       | 1900   | 1900 | 1900  | 1900    | 1900  | 1900   |
| Total Lost time (s)               |      | 4.0      |       | 4.0   | 4.0        |            | 4.0    |      | 4.0   |         | 4.0   | 4.0    |
| Lane Util. Factor                 |      | 0.95     |       | 1.00  | 0.95       |            | 1.00   |      | 1.00  |         | 1.00  | 1.00   |
| Frt                               |      | 0.99     |       | 1.00  | 1.00       |            | 1.00   |      | 0.85  |         | 1.00  | 0.85   |
| FIt Protected                     |      | 1.00     |       | 0.95  | 1.00       |            | 0.95   |      | 1.00  |         | 0.99  | 1.00   |
| Satd. Flow (prot)                 |      | 3508     |       | 1770  | 3539       |            | 1770   |      | 1583  |         | 1844  | 1583   |
| Flt Permitted                     |      | 1.00     |       | 0.95  | 1.00       |            | 0.95   |      | 1.00  |         | 0.99  | 1.00   |
| Satd. Flow (perm)                 |      | 3508     |       | 1770  | 3539       |            | 1770   |      | 1583  |         | 1844  | 1583   |
| Peak-hour factor, PHF             | 0.92 | 0.92     | 0.92  | 0.92  | 0.92       | 0.92       | 0.92   | 0.92 | 0.92  | 0.92    | 0.92  | 0.92   |
| Adj. Flow (vph)                   | 0    | 993      | 61    | 278   | 387        | 0          | 33     | 0    | 514   | 46      | 186   | 225    |
| RTOR Reduction (vph)              | 0    | 4        | 0     | 0     | 0          | 0          | 0      | 0    | 453   | 0       | 0     | 187    |
| Lane Group Flow (vph)             | 0    | 1050     | 0     | 278   | 387        | 0          | 33     | 0    | 61    | 0       | 232   | 38     |
| Turn Type                         |      | NA       |       | Prot  | NA         |            | Prot   |      | Perm  | Split   | NA    | Perm   |
| Protected Phases                  |      | 4        |       | 3     | 8          |            | 5      |      |       | 6       | 6     |        |
| Permitted Phases                  |      |          |       |       |            |            |        |      | 5     |         |       | 6      |
| Actuated Green, G (s)             |      | 32.6     |       | 18.1  | 54.7       |            | 9.4    |      | 9.4   |         | 15.7  | 15.7   |
| Effective Green, g (s)            |      | 32.6     |       | 18.1  | 54.7       |            | 9.4    |      | 9.4   |         | 15.7  | 15.7   |
| Actuated g/C Ratio                |      | 0.36     |       | 0.20  | 0.60       |            | 0,10   |      | 0.10  |         | 0.17  | 0.17   |
| Clearance Time (s)                |      | 4.0      |       | 4.0   | 4.0        |            | 4.0    |      | 4.0   |         | 4.0   | 4.0    |
| Vehicle Extension (s)             |      | 3.0      |       | 3.0   | 3.0        |            | 3.0    |      | 3.0   |         | 3.0   | 3.0    |
| Lane Grp Cap (vph)                |      | 1245     |       | 348   | 2108       |            | 181    |      | 162   |         | 315   | 270    |
| v/s Ratio Prot                    |      | c0.30    |       | c0.16 | 0.11       |            | 0.02   |      |       |         | c0.13 |        |
| v/s Ratio Perm                    |      |          |       |       |            |            |        |      | c0.04 |         |       | 0.02   |
| v/c Ratio                         |      | 0.84     |       | 0.80  | 0.18       |            | 0.18   |      | 0.37  |         | 0.74  | 0.14   |
| Uniform Delay, d1                 |      | 27.3     |       | 35.1  | 8.4        |            | 37.7   |      | 38.5  |         | 36.1  | 32.3   |
| Progression Factor                |      | 1.00     |       | 1.00  | 1.00       |            | 1.00   |      | 1.00  |         | 1.00  | 1.00   |
| Incremental Delay, d2             |      | 5.4      |       | 12.1  | 0.0        |            | 0.5    |      | 1.5   |         | 8.7   | 0.2    |
| Delay (s)                         |      | 32.6     |       | 47.2  | 8.5        |            | 38.2   |      | 39.9  |         | 44.8  | 32.6   |
| Level of Service                  |      | С        |       | D     | Α          |            | D      |      | D     |         | D     | С      |
| Approach Delay (s)                |      | 32.6     |       |       | 24.6       |            |        | 39.8 |       |         | 38.8  |        |
| Approach LOS                      |      | С        |       |       | С          |            |        | D    |       |         | D     |        |
| Intersection Summary              |      |          | 100   |       |            |            | 19     |      |       | To Plan |       | jalle, |
| HCM 2000 Control Delay            |      |          | 33.2  | H     | CM 2000    | Level of S | ervice |      | С     |         |       |        |
| HCM 2000 Volume to Capacity r     | atio |          | 0.75  |       |            |            |        |      |       |         |       |        |
| Actuated Cycle Length (s)         |      |          | 91.8  | Sı    | ım of lost | time (s)   |        |      | 16.0  |         |       |        |
| Intersection Capacity Utilization |      |          | 77.7% | IC    | U Level c  | of Service |        |      | D     |         |       |        |
| Analysis Period (min)             |      |          | 15    |       |            |            |        |      |       |         |       |        |
| c Critical Lane Group             |      |          |       |       |            |            |        |      |       |         |       |        |

|                                 | ٠        | -    | *     | •        | <b>←</b>   | •          | 1       | †       | -    | 1    | <b></b> | 1     |
|---------------------------------|----------|------|-------|----------|------------|------------|---------|---------|------|------|---------|-------|
| Movement                        | EBL      | EBT  | EBR   | WBL      | WBT        | WBR        | NBL     | NBT     | NBR  | SBL  | SBT     | SBR   |
| Lane Configurations             | M        | 1    |       |          | <b>∱</b> Ъ |            | ħ       | 4       |      |      |         |       |
| Volume (vph)                    | 317      | 34   | 0     | 0        | 8          | 1          | 610     | 0       | 201  | 0    | 0       | 0     |
| ideal Flow (vphpl)              | 1900     | 1900 | 1900  | 1900     | 1900       | 1900       | 1900    | 1900    | 1900 | 1900 | 1900    | 1900  |
| Total Lost time (s)             | 4.0      | 4.0  |       |          | 4.0        |            | 4.0     | 4.0     |      |      |         |       |
| Lane Util. Factor               | 1.00     | 1.00 |       |          | 0.95       |            | 0.95    | 0.95    |      |      |         |       |
| Frt                             | 1.00     | 1.00 |       |          | 0.98       |            | 1.00    | 0.92    |      |      |         |       |
| Flt Protected                   | 0.95     | 1.00 |       |          | 1.00       |            | 0.95    | 0.98    |      |      |         |       |
| Satd. Flow (prot)               | 1770     | 1863 |       |          | 3486       |            | 1681    | 1596    |      |      |         |       |
| Flt Permitted                   | 0.75     | 1.00 |       |          | 1.00       |            | 0.95    | 0.98    |      |      |         |       |
| Satd. Flow (perm)               | 1398     | 1863 | 120   |          | 3486       |            | 1681    | 1596    |      |      |         |       |
| Peak-hour factor, PHF           | 0.92     | 0.92 | 0.92  | 0.92     | 0.92       | 0.92       | 0.92    | 0.92    | 0.92 | 0.92 | 0.92    | 0.92  |
| Adj. Flow (vph)                 | 345      | 37   | 0     | 0        | 9          | 1          | 663     | 0       | 218  | 0    | 0       | 0     |
| RTOR Reduction (vph)            | 0        | 0    | 0     | 0        | 1          | 0          | 0       | 63      | 0    | 0    | 0       | 0     |
| Lane Group Flow (vph)           | 345      | 37   | 0     | 0        | 9          | 0          | 451     | 367     | 0    | 0    | 0       | 0     |
| Turn Type                       | Perm     | NA   |       |          | NA         |            | Perm    | NA      |      |      |         |       |
| Protected Phases                |          | 4    |       |          | 8          |            |         | 2       |      |      |         |       |
| Permitted Phases                | 4        |      |       |          |            |            | 2       |         |      |      |         |       |
| Actuated Green, G (s)           | 16.2     | 16.2 |       |          | 16.2       |            | 20.2    | 20.2    |      |      |         |       |
| Effective Green, g (s)          | 16.2     | 16.2 |       |          | 16.2       |            | 20.2    | 20.2    |      |      |         |       |
| Actuated g/C Ratio              | 0.36     | 0.36 |       |          | 0.36       |            | 0.45    | 0.45    |      |      |         |       |
| Clearance Time (s)              | 4.0      | 4.0  |       |          | 4.0        |            | 4.0     | 4.0     |      |      |         |       |
| Vehicle Extension (s)           | 3.0      | 3.0  |       |          | 3.0        |            | 3.0     | 3.0     |      |      |         |       |
| Lane Grp Cap (vph)              | 510      | 679  |       |          | 1271       |            | 764     | 726     |      |      |         |       |
| v/s Ratio Prot                  |          | 0.02 |       |          | 0.00       |            |         |         |      |      |         |       |
| v/s Ratio Perm                  | c0.25    |      |       |          |            |            | c0.27   | 0.23    |      |      |         |       |
| v/c Ratio                       | 0.68     | 0.05 |       |          | 0.01       |            | 0.59    | 0.51    |      |      |         |       |
| Uniform Delay, d1               | 11.9     | 9.1  |       |          | 9.0        |            | 9.0     | 8.6     |      |      |         |       |
| Progression Factor              | 1.00     | 1.00 |       |          | 1.00       |            | 1.00    | 1.00    |      |      |         |       |
| Incremental Delay, d2           | 3.5      | 0.0  |       |          | 0.0        |            | 1.2     | 0.6     |      |      |         |       |
| Delay (s)                       | 15.4     | 9.2  |       |          | 9.0        |            | 10.2    | 9.1     |      |      |         |       |
| Level of Service                | В        | Α    |       |          | Α          |            | В       | Α       |      |      |         |       |
| Approach Delay (s)              |          | 14.8 |       |          | 9.0        |            | _       | 9.7     |      |      | 0.0     |       |
| Approach LOS                    |          | В    |       |          | Α          |            |         | Α       |      |      | Α       |       |
| Intersection Summary            |          |      |       | W 18 (1) |            |            |         | NAME OF |      |      |         | 4/2/5 |
| HCM 2000 Control Delay          |          |      | 11.2  | HO       | CM 2000    | Level of S | Service |         | В    |      |         |       |
| HCM 2000 Volume to Capaci       | ty ratio |      | 0.63  |          |            |            |         |         |      |      |         |       |
| Actuated Cycle Length (s)       | -        |      | 44.4  | Su       | m of lost  | time (s)   |         |         | 8.0  |      |         |       |
| Intersection Capacity Utilizati | on       |      | 53.9% |          | U Level o  |            |         |         | Α    |      |         |       |
| Analysis Period (min)           |          |      | 15    |          |            |            |         |         |      |      |         |       |
| c Critical Lane Group           |          |      |       |          |            |            |         |         |      |      |         |       |

|                                      | <b>→</b>     | •            | 1           | <del></del> | 4          | 1          |                                                |
|--------------------------------------|--------------|--------------|-------------|-------------|------------|------------|------------------------------------------------|
| Movement                             | EBT          | EBR          | WBL         | WBT         | NBL        | NBR        | <b>的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个</b> |
| Lane Configurations                  | B            | 7            | ሻ           | <b>^</b>    |            |            |                                                |
| Volume (veh/h)                       | 381          | 1048         | 5           | 612         | 0          | 0          |                                                |
| Sign Control<br>Grade                | Free<br>0%   |              |             | Free        | Stop       |            |                                                |
| Peak Hour Factor                     | 0.92         | 0.92         | 0.92        | 0%<br>0.92  | 0%<br>0.92 | 0.92       |                                                |
| Hourly flow rate (vph)               | 414          | 1139         | 5           | 665         | 0.92       | 0.92       |                                                |
| Pedestrians                          | 717          | 1100         | J           | 000         | Ū          | U          |                                                |
| Lane Width (ft)                      |              |              |             |             |            |            |                                                |
| Walking Speed (ft/s)                 |              |              |             |             |            |            |                                                |
| Percent Blockage                     |              |              |             |             |            |            |                                                |
| Right turn flare (veh)               | **           |              |             |             |            |            |                                                |
| Median type<br>Median storage veh)   | None         |              |             | None        |            |            |                                                |
| Upstream signal (ft)                 |              |              |             | 1319        |            |            |                                                |
| pX, platoon unblocked                |              |              |             |             |            |            |                                                |
| vC, conflicting volume               |              |              | 1553        |             | 758        | 414        |                                                |
| vC1, stage 1 conf vol                |              |              |             |             |            |            |                                                |
| vC2, stage 2 conf vol                |              |              | 4550        |             | 754        |            |                                                |
| vCu, unblocked vol<br>tC, single (s) |              |              | 1553<br>4.1 |             | 758<br>6.8 | 414<br>6.9 |                                                |
| tC, single (s)                       |              |              | 4,1         |             | 0.8        | 6.9        |                                                |
| tF (s)                               |              |              | 2.2         |             | 3.5        | 3.3        |                                                |
| p0 queue free %                      |              |              | 99          |             | 100        | 100        |                                                |
| cM capacity (veh/h)                  |              |              | 422         |             | 339        | 587        |                                                |
| Direction, Lane #                    | EB 1         | EB 2         | WB 1        | WB 2        | WB3        |            | 。<br>第二章                                       |
| Volume Total                         | 794          | 759          | 5           | 333         | 333        |            |                                                |
| Volume Left                          | 0            | 0            | 5           | 0           | 0          |            |                                                |
| Volume Right                         | 380          | 759          | 0           | 0           | 0          |            |                                                |
| cSH<br>Volume to Capacity            | 1700<br>0.47 | 1700<br>0.45 | 422         | 1700        | 1700       |            |                                                |
| Queue Length 95th (ft)               | 0.47         | 0.45         | 0.01<br>1   | 0.20<br>0   | 0.20<br>0  |            |                                                |
| Control Delay (s)                    | 0.0          | 0.0          | 13.6        | 0.0         | 0.0        |            |                                                |
| Lane LOS                             | 0.0          | 0,0          | В           | 0.0         | 0.0        |            |                                                |
| Approach Delay (s)                   | 0.0          |              | 0.1         |             |            |            |                                                |
| Approach LOS                         |              |              |             |             |            |            |                                                |
| Intersection Summary                 | Jan San      | No.          |             |             |            |            |                                                |
| Average Delay                        |              |              | 0.0         |             |            |            |                                                |
| Intersection Capacity Utilization    | n            |              | 53.9%       | IC          | U Level o  | of Service | Α                                              |
| Analysis Period (min)                |              |              | 15          |             |            |            |                                                |

|                                                          | 1         | •           | †            | P            | 1           | 1          |     |
|----------------------------------------------------------|-----------|-------------|--------------|--------------|-------------|------------|-----|
| Movement                                                 | WBL       | WBR         | NBT          | NBR          | SBL         | SBT        |     |
| Lane Configurations                                      | 7         | 7           | <b>个个</b>    | 74           | _           | લી         |     |
| Volume (veh/h)                                           | 125       | 60          | 747          | 306          | 0           | _ 1        |     |
| Sign Control                                             | Stop      |             | Free         |              |             | Free       |     |
| Grade                                                    | 0%        |             | 0%           |              |             | 0%         |     |
| Peak Hour Factor                                         | 0.92      | 0.92        | 0.92         | 0.92         | 0.92        | 0.92       |     |
| Hourly flow rate (vph)                                   | 136       | 65          | 812          | 333          | 0           | 1          |     |
| Pedestrians                                              |           |             |              |              |             |            |     |
| Lane Width (ft)                                          |           |             |              |              |             |            |     |
| Walking Speed (ft/s)                                     |           |             |              |              |             |            |     |
| Percent Blockage                                         |           |             |              |              |             |            |     |
| Right turn flare (veh)<br>Median type                    |           |             | None         |              |             | None       |     |
| Median storage veh)                                      |           |             | NONE         |              |             | INOHE      |     |
| Upstream signal (ft)                                     |           |             |              |              |             |            |     |
| pX, platoon unblocked                                    |           |             |              |              |             |            |     |
| vC, conflicting volume                                   | 813       | 406         |              |              | 1145        |            |     |
| vC1, stage 1 conf vol                                    |           |             |              |              | 25, 82      |            |     |
| vC2, stage 2 conf vol                                    |           |             |              |              |             |            |     |
| vCu, unblocked vol                                       | 813       | 406         |              |              | 1145        |            |     |
| tC, single (s)                                           | 6.8       | 6.9         |              |              | 4.1         |            |     |
| tC, 2 stage (s)                                          |           |             |              |              |             |            |     |
| tF (s)                                                   | 3.5       | 3.3         |              |              | 2.2         |            |     |
| p0 queue free %                                          | 57        | 89          |              |              | 100         |            |     |
| cM capacity (veh/h)                                      | 316       | 594         |              |              | 606         |            |     |
| Direction, Lane #                                        | WB 1      | WB 2        | NB 1         | NB 2         | NB 3        | SB 1       |     |
| Volume Total                                             | 136       | 65          | 406          | 406          | 333         | 1          |     |
| Volume Left                                              | 136       | 0           | 0            | 0            | 0           | 0          |     |
| Volume Right<br>cSH                                      | 0<br>316  | 65<br>504   | 0            | 0            | 333<br>1700 | 0<br>606   |     |
| Volume to Capacity                                       | 0.43      | 594<br>0.11 | 1700<br>0.24 | 1700<br>0.24 | 0.20        | 0.00       |     |
| Queue Length 95th (ft)                                   | 52        | 9           | 0.24         | 0.24         | 0.20        | 0.00       |     |
| Control Delay (s)                                        | 24.7      | 11.8        | 0.0          | 0.0          | 0.0         | 0.0        |     |
| Lane LOS                                                 | 24.7<br>C | В           | 0.0          | 0.0          | 0.0         | 0.0        |     |
| Approach Delay (s)                                       | 20.5      | 5           | 0.0          |              |             | 0.0        |     |
| Approach LOS                                             | С         |             | -,,-         |              |             | 7.85       |     |
| Intersection Summary                                     |           |             |              |              | A. Sand     | 120        |     |
| Average Delay                                            |           |             | 3.1          |              |             |            | -   |
| Intersection Capacity Utilizati<br>Analysis Period (min) | ion       |             | 34.2%<br>15  | IC           | U Level     | of Service | e A |

|                                   | ۶               | <b>→</b>   | •              | 1            | <b>←</b>          | 4                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           | P             | 1            | 1                  | 4              |
|-----------------------------------|-----------------|------------|----------------|--------------|-------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|--------------|--------------------|----------------|
| Movement                          | EBL             | EBT        | EBR            | WBL          | WBT               | WBR                   | NBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NBT         | NBR           | SBL          | SBT                | SBR            |
| Lane Configurations               |                 | <b>↑</b> ↑ |                | 7            | 十十                |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 7             |              | 4                  | 7              |
| Volume (vph)                      | 0               | 914        | 56             | 256          | 356               | 0                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0           | 473           | 13           | 171                | 207            |
| Ideal Flow (vphpl)                | 1900            | 1900       | 1900           | 1900         | 1900              | 1900                  | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1900        | 1900          | 1900         | 1900               | 1900           |
| Total Lost time (s)               |                 | 4.0        |                | 4.0          | 4.0               |                       | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 4.0           |              | 4.0                | 4.0            |
| Lane Util. Factor                 |                 | 0.95       |                | 1.00         | 0.95              |                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 1.00          |              | 1.00               | 1.00           |
| Frt                               |                 | 0.99       |                | 1.00         | 1.00              |                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 0.85          |              | 1.00               | 0.85           |
| Flt Protected                     |                 | 1.00       |                | 0.95         | 1.00              |                       | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 1.00          |              | 1.00               | 1.00           |
| Satd_Flow (prot)                  |                 | 3508       |                | 1770         | 3539              |                       | 1770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 1583          |              | 1856               | 1583           |
| Flt Permitted                     |                 | 1.00       |                | 0.95         | 1.00              |                       | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 1.00          |              | 1.00               | 1.00           |
| Satd. Flow (perm)                 |                 | 3508       |                | 1770         | 3539              |                       | 1770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del></del> | 1583          |              | 1856               | 1583           |
| Peak-hour factor, PHF             | 0.92            | 0.92       | 0.92           | 0.92         | 0.92              | 0.92                  | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.92        | 0.92          | 0.92         | 0.92               | 0.92           |
| Adj. Flow (vph)                   | 0               | 993        | 61             | 278          | 387               | 0                     | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0           | 514           | 14           | 186                | 225            |
| RTOR Reduction (vph)              | 0               | 4          | 0              | 0            | 0                 | 0                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0           | 460           | 0            | 0                  | 190            |
| Lane Group Flow (vph)             | 0               | 1050       | 0              | 278          | 387               | 0                     | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0           | 54            | 0            | 200                | 35             |
| Tum Type                          |                 | NA         |                | Prot         | NA                |                       | Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | Perm          | Split        | NA                 | Perm           |
| Protected Phases                  |                 | 4          |                | 3            | 8                 |                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | _             | 6            | 6                  | •              |
| Permitted Phases                  |                 | 00.4       |                | 40.0         | 547               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 5             |              | 44.0               | 6              |
| Actuated Green, G (s)             |                 | 32.4       |                | 18.3         | 54.7              |                       | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 9.4           |              | 14.0               | 14.0           |
| Effective Green, g (s)            |                 | 32.4       |                | 18.3         | 54.7              |                       | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 9.4           |              | 14.0               | 14.0           |
| Actuated g/C Ratio                |                 | 0.36       |                | 0.20         | 0.61<br>4.0       |                       | 0.10<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 0.10<br>4.0   |              | 0.16               | 0.16<br>4.0    |
| Clearance Time (s)                |                 | 4.0<br>3.0 |                | 4.0          | 4.0<br>3.0        |                       | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 3.0           |              | 4.0<br>3.0         | 3.0            |
| Vehicle Extension (s)             |                 |            | <del></del>    | 3.0          |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 165           |              | 288                | 245            |
| Lane Grp Cap (vph)                |                 | 1261       |                | 359          | 2148<br>0.11      |                       | 184<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 100           |              | ∠oo<br>c0.11       | 240            |
| v/s Ratio Prot<br>v/s Ratio Perm  |                 | c0.30      |                | c0.16        | U <sub>z</sub> II |                       | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | c0.03         |              | CO. 11             | 0.02           |
| v/s Ratio Perm                    |                 | 0.83       |                | 0.77         | 0.18              |                       | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 0.32          |              | 0.69               | 0.02           |
| Uniform Delay, d1                 |                 | 26.4       |                | 33.9         | 7.8               |                       | 36.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 37.4          |              | 36.0               | 32.9           |
| Progression Factor                |                 | 1.00       |                | 1.00         | 1.00              |                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 1.00          |              | 1.00               | 1.00           |
| Incremental Delay, d2             |                 | 4.9        |                | 10.0         | 0.0               |                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 1.00          |              | 7.1                | 0.3            |
| Delay (s)                         |                 | 31.2       |                | 43.9         | 7.8               |                       | 37.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 38.6          |              | 43.1               | 33.1           |
| Level of Service                  |                 | C          |                | 43.9<br>D    | 7.0<br>A          | 182                   | 37.3<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 50.0<br>D     |              | 75,1<br>D          | C              |
| Approach Delay (s)                |                 | 31.2       |                | D            | 22.9              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.5        | J             |              | 37.8               | Ū              |
| Approach LOS                      |                 | C          |                |              | 22.5<br>C         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D           |               |              | D                  |                |
|                                   | en and a second |            | - THE PARTY OF | en ner myser |                   | INCOME NAME OF STREET | WASHINGTON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF |             | A POST OF THE | A STATISTICS | INTERNATION OF THE | CHANGE SERVICE |
| Intersection Summary              | Stel Pills      |            | 04.7           |              | 014.0000          |                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |               |              | A STATE OF         | 的程度            |
| HCM 2000 Control Delay            |                 |            | 31.7           | н            | CM 2000           | Level of              | Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | С             |              |                    |                |
| HCM 2000 Volume to Capacity       | ratio           |            | 0.73           | •            |                   | 4 4! /-\              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 460           |              |                    |                |
| Actuated Cycle Length (s)         | _               |            | 90.1           |              |                   | t time (s)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 16.0<br>D     |              |                    |                |
| Intersection Capacity Utilization | 1               |            | 76.1%          | IC           | O FeA61           | of Service            | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | D             |              |                    |                |
| Analysis Period (min)             |                 |            | 15             |              |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |               |              |                    |                |
| c Critical Lane Group             |                 |            |                |              |                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |               |              |                    |                |

|                               | ٠          | -    | 7     | •    | +           | 4          | 4       | †    | 1      | 1      | 1    | 1    |
|-------------------------------|------------|------|-------|------|-------------|------------|---------|------|--------|--------|------|------|
| Movement                      | EBL        | EBT  | EBR   | WBL  | WBT         | WBR        | NBL     | NBT  | NBR    | SBL    | SBT  | SBR  |
| Lane Configurations           | 19         | 1    | V     |      | 朴玲          |            | 7       | 4    |        | 100    |      |      |
| Volume (vph)                  | 317        | 34   | 0     | 0    | 8           | 1          | 610     | 0    | 31     | 0      | 0    | 0    |
| Ideal Flow (vphpl)            | 1900       | 1900 | 1900  | 1900 | 1900        | 1900       | 1900    | 1900 | 1900   | 1900   | 1900 | 1900 |
| Total Lost time (s)           | 4.0        | 4.0  |       |      | 4.0         |            | 4.0     | 4.0  |        |        |      |      |
| Lane Util, Factor             | 1.00       | 1.00 |       |      | 0.95        |            | 0.95    | 0.95 |        |        |      |      |
| Frt                           | 1.00       | 1.00 |       |      | 0.98        |            | 1.00    | 0.99 |        |        |      |      |
| Flt Protected                 | 0.95       | 1.00 |       |      | 1.00        |            | 0.95    | 0.96 |        |        |      |      |
| Satd. Flow (prot)             | 1770       | 1863 |       |      | 3486        |            | 1681    | 1668 |        |        |      |      |
| Flt Permitted                 | 0.75       | 1.00 |       |      | 1.00        |            | 0.95    | 0.96 |        |        |      |      |
| Satd. Flow (perm)             | 1398       | 1863 |       |      | 3486        |            | 1681    | 1668 |        |        |      |      |
| Peak-hour factor, PHF         | 0.92       | 0.92 | 0.92  | 0.92 | 0.92        | 0.92       | 0.92    | 0.92 | 0.92   | 0.92   | 0.92 | 0.92 |
| Adj. Flow (vph)               | 345        | 37   | 0     | 0    | 9           | 1          | 663     | 0    | 34     | 0      | 0    | 0    |
| RTOR Reduction (vph)          | 0          | 0    | 0     | 0    | 1           | 0          | 0       | 11   | 0      | 0      | 0    | 0    |
| Lane Group Flow (vph)         | 345        | 37   | 0     | 0    | 9           | 0          | 351     | 335  | 0      | 0      | 0    | 0    |
| Tum Type                      | Perm       | NA   |       | -    | NA          |            | Perm    | NA   |        |        |      |      |
| Protected Phases              |            | 4    |       |      | 8           |            |         | 2    |        |        |      |      |
| Permitted Phases              | 4          |      |       |      |             |            | 2       |      |        |        |      |      |
| Actuated Green, G (s)         | 15.6       | 15.6 |       |      | 15.6        |            | 16.8    | 16.8 |        |        |      |      |
| Effective Green, g (s)        | 15.6       | 15.6 |       |      | 15.6        |            | 16.8    | 16.8 |        |        |      |      |
| Actuated g/C Ratio            | 0.39       | 0.39 |       |      | 0.39        |            | 0.42    | 0.42 |        |        |      |      |
| Clearance Time (s)            | 4.0        | 4.0  |       |      | 4.0         |            | 4.0     | 4.0  |        |        |      |      |
| Vehicle Extension (s)         | 3.0        | 3.0  |       |      | 3.0         |            | 3.0     | 3.0  |        |        |      |      |
| Lane Grp Cap (vph)            | 539        | 719  |       |      | 1346        |            | 699     | 693  |        |        |      |      |
| v/s Ratio Prot                |            | 0.02 |       |      | 0.00        |            |         |      |        |        |      |      |
| v/s Ratio Perm                | c0.25      |      |       |      |             |            | c0.21   | 0.20 |        |        |      |      |
| v/c Ratio                     | 0.64       | 0.05 |       |      | 0.01        |            | 0.50    | 0.48 |        |        |      |      |
| Uniform Delay, d1             | 10.1       | 7.8  |       |      | 7.6         |            | 8.7     | 8.6  |        |        |      |      |
| Progression Factor            | 1.00       | 1.00 |       |      | 1.00        |            | 1.00    | 1.00 |        |        |      |      |
| Incremental Delay, d2         | 2.6        | 0.0  |       |      | 0.0         |            | 0.6     | 0.5  |        |        |      |      |
| Delay (s)                     | 12.7       | 7.8  |       |      | 7.6         |            | 9.3     | 9.2  |        |        |      |      |
| Level of Service              | В          | Α    |       |      | Α           |            | Α       | Α    |        |        |      |      |
| Approach Delay (s)            |            | 12.2 |       |      | 7.6         |            |         | 9.2  |        |        | 0.0  |      |
| Approach LOS                  |            | В    |       |      | Α           |            |         | Α    |        |        | Α    |      |
| Intersection Summary          |            |      |       |      | SALESPACE V |            | NAME:   | 1000 | 10 204 | ESE IN |      |      |
| HCM 2000 Control Delay        |            |      | 10.3  | H    | CM 2000     | Level of   | Service |      | В      |        |      |      |
| HCM 2000 Volume to Capa       | city ratio |      | 0.57  |      |             |            |         |      |        |        |      |      |
| Actuated Cycle Length (s)     |            |      | 40.4  | Sı   | um of lost  | time (s)   |         |      | 8.0    |        |      |      |
| Intersection Capacity Utiliza | ition      |      | 53.3% | IC   | U Level o   | of Service |         |      | Α      |        |      |      |
| Analysis Period (min)         |            |      | 15    |      |             |            |         |      |        |        |      |      |
| c Critical Lane Group         |            |      |       |      |             |            |         |      |        |        |      |      |

|                                                                                                                                                | <b>→</b>                                    | *                                    | 1                                                   | <b>←</b>                                  | 1                                         | P                 |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------|-----------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------|-------------------------|
| Movement                                                                                                                                       | EBT                                         | EBR                                  | WBL                                                 | WBT                                       | NBL                                       | NBR               |                         |
| Lane Configurations<br>Volume (veh/h)<br>Sign Control<br>Grade                                                                                 | <b>1</b> →<br>352<br>Free<br>0%             | 1048                                 | <b>5</b>                                            | ↑↑<br>612<br>Free<br>0%                   | 0<br>Stop<br>0%                           | 0                 |                         |
| Peak Hour Factor<br>Hourly flow rate (vph)<br>Pedestrians<br>Lane Width (ft)<br>Walking Speed (ft/s)                                           | 0.92<br>383                                 | 0.92<br>1139                         | 0.92<br>5                                           | 0.92<br>665                               | 0.92                                      | 0.92<br>0         |                         |
| Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft)                                                   | None                                        |                                      |                                                     | None<br>1319                              |                                           |                   |                         |
| pX, platoon unblocked<br>vC, conflicting volume<br>vC1, stage 1 conf vol<br>vC2, stage 2 conf vol                                              |                                             |                                      | 1522                                                | ,5,0                                      | 726                                       | 383               |                         |
| vCu, unblocked vol<br>tC, single (s)<br>tC, 2 stage (s)                                                                                        |                                             |                                      | 1522<br>4.1                                         |                                           | 726<br>6.8                                | 383<br>6.9        |                         |
| tF (s)<br>p0 queue free %<br>cM capacity (veh/h)                                                                                               |                                             |                                      | 2.2<br>99<br>434                                    |                                           | 3.5<br>100<br>355                         | 3.3<br>100<br>615 |                         |
| Direction, Lane #                                                                                                                              | EB 1                                        | EB 2                                 | WB 1                                                | WB 2                                      | WB 3                                      |                   | REPORTS AND LESS OF THE |
| Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (ft) Control Delay (s) Lane LOS Approach Delay (s) Approach LOS | 762<br>0<br>380<br>1700<br>0.45<br>0<br>0.0 | 759<br>0<br>759<br>1700<br>0.45<br>0 | 5<br>5<br>0<br>434<br>0.01<br>1<br>13.4<br>B<br>0.1 | 333<br>0<br>0<br>1700<br>0.20<br>0<br>0.0 | 333<br>0<br>0<br>1700<br>0.20<br>0<br>0.0 |                   |                         |
| Average Delay Intersection Capacity Utilization Analysis Period (min)                                                                          | on                                          |                                      | 0.0<br>53.3%<br>15                                  | IC                                        | U Level o                                 | f Service         | A                       |

|                                                                             | 1           | 4          | †                  | <i>&gt;</i> | 1         | <b>↓</b>   |   |
|-----------------------------------------------------------------------------|-------------|------------|--------------------|-------------|-----------|------------|---|
| Movement                                                                    | WBL         | WBR        | NBT                | NBR         | SBL       | SBT        |   |
| Lane Configurations                                                         | 105         | <b>1</b> 7 | <b>^</b>           | 747         | 0         | र्स        |   |
| Volume (veh/h)<br>Sign Control                                              | 125<br>Stop | 60         | 747<br>Free        | 342         | 0         | 1<br>Free  |   |
| Grade                                                                       | 0%          |            | 0%                 |             |           | 0%         |   |
| Peak Hour Factor                                                            | 0.92        | 0.92       | 0.92               | 0.92        | 0.92      | 0.92       |   |
| Hourly flow rate (vph)                                                      | 136         | 65         | 812                | 372         | 0.02      | 1          |   |
| Pedestrians                                                                 |             | -          | - 1.               | - 1         |           | •          |   |
| Lane Width (ft)                                                             |             |            |                    |             |           |            |   |
| Walking Speed (ft/s)                                                        |             |            |                    |             |           |            |   |
| Percent Blockage                                                            |             |            |                    |             |           |            |   |
| Right turn flare (veh)                                                      |             |            |                    |             |           |            |   |
| Median type                                                                 |             |            | None               |             |           | None       |   |
| Median storage veh) Upstream signal (ft)                                    |             |            |                    |             |           |            |   |
| pX, platoon unblocked                                                       |             |            |                    |             |           |            |   |
| vC, conflicting volume                                                      | 813         | 406        |                    |             | 1184      |            |   |
| vC1, stage 1 conf vol                                                       | 0.19        | 100        |                    |             | 1104      |            |   |
| vC2, stage 2 conf vol                                                       |             |            |                    |             |           |            |   |
| vCu, unblocked vol                                                          | 813         | 406        |                    |             | 1184      |            |   |
| tC, single (s)                                                              | 6.8         | 6.9        |                    |             | 4.1       |            |   |
| tC, 2 stage (s)                                                             |             |            |                    |             |           |            |   |
| tF(s)                                                                       | 3.5         | 3.3        |                    |             | 2.2       |            |   |
| p0 queue free %                                                             | 57          | 89<br>504  |                    |             | 100       |            |   |
| cM capacity (veh/h)                                                         | 316         | 594        |                    |             | 586       |            |   |
| Direction, Lane #                                                           | WB 1        | WB 2       | NB 1               | NB 2        | NB 3      | SB 1       |   |
| Volume Total<br>Volume Left                                                 | 136         | 65         | 406                | 406         | 372       | 1          |   |
| Volume Right                                                                | 136<br>0    | 0<br>65    | 0                  | 0<br>0      | 0<br>372  | 0<br>0     |   |
| cSH                                                                         | 316         | 594        | 1700               | 1700        | 1700      | 586        |   |
| Volume to Capacity                                                          | 0.43        | 0.11       | 0.24               | 0.24        | 0.22      | 0.00       |   |
| Queue Length 95th (ft)                                                      | 52          | 9          | 0                  | 0           | 0         | 0          |   |
| Control Delay (s)                                                           | 24.7        | 11.8       | 0.0                | 0.0         | 0.0       | 0.0        |   |
| Lane LOS                                                                    | С           | В          |                    |             |           |            |   |
| Approach Delay (s)                                                          | 20.5        |            | 0.0                |             |           | 0.0        |   |
| Approach LOS                                                                | С           |            |                    |             |           |            |   |
| Intersection Summary                                                        |             | 100        | TO SECTION         |             | Year.     |            |   |
| Average Delay<br>Intersection Capacity Utilizatior<br>Analysis Period (min) | n           |            | 3.0<br>34.2%<br>15 | IC          | U Level o | of Service | Α |

|                                                    | ٠         | <b>→</b>   | *              | •            | 4           | 4                  | 4            | <b>†</b>      | P            | 1          | Ţ                                                                                                             | 1            |
|----------------------------------------------------|-----------|------------|----------------|--------------|-------------|--------------------|--------------|---------------|--------------|------------|---------------------------------------------------------------------------------------------------------------|--------------|
| Movement                                           | EBL       | EBT        | EBR            | WBL          | WBT         | WBR                | NBL          | NBT           | NBR          | SBL        | SBT                                                                                                           | SBR          |
| Lane Configurations                                |           | <b>↑</b> ↑ |                | 7            | <b>十</b> 个  |                    | ħ            |               | 7            |            | 4                                                                                                             | 7            |
| Volume (vph)                                       | 0         | 914        | 56             | 256          | 356         | 0                  | 30           | 0             | 473          | 14         | 171                                                                                                           | 207          |
| Ideal Flow (vphpl)                                 | 1900      | 1900       | 1900           | 1900         | 1900        | 1900               | 1900         | 1900          | 1900         | 1900       | 1900                                                                                                          | 1900         |
| Total Lost time (s)                                |           | 4.0        |                | 4.0          | 4.0         |                    | 4.0          |               | 4.0          |            | 4.0                                                                                                           | 4.0          |
| Lane Util. Factor                                  |           | 0.95       |                | 1.00         | 0.95        |                    | 1.00         |               | 1.00         |            | 1.00                                                                                                          | 1.00         |
| Frt                                                |           | 0.99       |                | 1.00         | 1.00        |                    | 1.00         |               | 0.85         |            | 1.00                                                                                                          | 0.85         |
| Flt Protected                                      |           | 1.00       |                | 0.95         | 1.00        |                    | 0.95         |               | 1.00         |            | 1.00                                                                                                          | 1.00         |
| Satd. Flow (prot)                                  |           | 3508       |                | 1770         | 3539        |                    | 1770         |               | 1583         |            | 1856                                                                                                          | 1583         |
| Flt Permitted                                      |           | 1.00       |                | 0.95         | 1.00        |                    | 0.95         |               | 1.00         |            | 1.00                                                                                                          | 1.00         |
| Satd. Flow (perm)                                  |           | 3508       |                | 1770         | 3539        |                    | 1770         |               | 1583         |            | 1856                                                                                                          | 1583         |
| Peak-hour factor, PHF                              | 0.92      | 0.92       | 0.92           | 0.92         | 0.92        | 0.92               | 0.92         | 0.92          | 0.92         | 0.92       | 0.92                                                                                                          | 0.92         |
| Adj. Flow (vph)                                    | 0         | 993        | 61             | 278          | 387         | 0                  | 33           | 0             | 514          | 15         | 186                                                                                                           | 225          |
| RTOR Reduction (vph)                               | 0         | 4          | 0              | 0            | 0           | 0                  | 0            | 0             | 462          | 0          | 0                                                                                                             | 189          |
| Lane Group Flow (vph)                              | 0         | 1050       | 0              | 278          | 387         | 0                  | 33           | 0             | 52           | 0          | 201                                                                                                           | 36           |
| Turn Type                                          |           | NA         |                | Prot         | NA          |                    | Prot         |               | Perm         | Split      | NA                                                                                                            | Perm         |
| Protected Phases                                   |           | 4          |                | 3            | 8           |                    | 5            |               | _            | 6          | 6                                                                                                             | _            |
| Permitted Phases                                   |           |            |                |              |             |                    |              |               | 5            |            |                                                                                                               | 6            |
| Actuated Green, G (s)                              |           | 32.4       |                | 18.1         | 54.5        |                    | 9.2          |               | 9.2          |            | 14.4                                                                                                          | 14.4         |
| Effective Green, g (s)                             |           | 32.4       |                | 18.1         | 54.5        |                    | 9.2          |               | 9.2          |            | 14.4                                                                                                          | 14.4         |
| Actuated g/C Ratio                                 |           | 0.36       |                | 0.20         | 0.60        |                    | 0.10         |               | 0.10         |            | 0.16                                                                                                          | 0.16         |
| Clearance Time (s)                                 |           | 4.0<br>3.0 |                | 4.0          | 4.0         |                    | 4.0          |               | 4.0          |            | 4.0                                                                                                           | 4.0          |
| Vehicle Extension (s)                              |           |            |                | 3.0          | 3.0         | <del></del>        | 3.0          |               | 3.0          |            | 3.0                                                                                                           | 3.0          |
| Lane Grp Cap (vph)                                 |           | 1261       |                | 355          | 2140        |                    | 180          |               | 161          |            | 296                                                                                                           | 252          |
| v/s Ratio Prot                                     |           | c0.30      |                | c0.16        | 0.11        |                    | 0.02         |               | -0.00        |            | c0.11                                                                                                         | 0.00         |
| v/s Ratio Perm<br>v/c Ratio                        |           | 0.83       |                | 0.70         | 0.40        |                    | 0.40         |               | c0.03        |            | 0.00                                                                                                          | 0.02         |
| Uniform Delay, d1                                  |           | 26.4       |                | 0.78         | 0.18<br>7.9 |                    | 0.18         |               | 0.33<br>37.6 |            | 0.68                                                                                                          | 0.14         |
| Progression Factor                                 |           | 1.00       |                | 34.1<br>1.00 | 1.00        |                    | 37.0<br>1.00 |               | 1.00         |            | 35.7<br>1.00                                                                                                  | 32.5<br>1.00 |
| Incremental Delay, d2                              |           | 4.9        |                | 10.8         | 0.0         |                    | 0.5          |               | 1.00         |            | 6.1                                                                                                           | 0.3          |
| Delay (s)                                          |           | 31.2       |                | 44.9         | 7.9         |                    | 37.5         |               | 38.8         |            | 41.7                                                                                                          | 32.8         |
| Level of Service                                   |           | 51.2<br>C  |                | 44.3<br>D    | A           |                    | 37.3<br>D    |               | 30.0<br>D    |            | 41.7<br>D                                                                                                     | 32.6<br>C    |
| Approach Delay (s)                                 |           | 31.2       |                | D            | 23.4        |                    | U            | 38.7          | U            |            | 37.0                                                                                                          | C            |
| Approach LOS                                       |           | C          |                |              | 23.4<br>C   |                    |              | 50.7<br>D     |              |            | 37.0<br>D                                                                                                     |              |
|                                                    | Witness . |            | CONTRACT NAMES | nevezo resta | ESCHERENIC  | W SASSELL CORP. IN | A ZTELESTON  | Later Turket  | SCIENCE AND  | SANTERS OF | NAME OF THE OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, | Children S   |
| Intersection Summary HCM 2000 Control Delay        | de la la  | 1941       | 31.7           |              | CM 0000     | Level of S         |              | THE PROPERTY. | С            | Wishes.    |                                                                                                               | WEDES        |
| HCM 2000 Control Delay HCM 2000 Volume to Capacity | ratio     |            | 0.73           | יח           | CIVI 2000   | revei of S         | ervice       |               | C            |            |                                                                                                               |              |
| Actuated Cycle Length (s)                          | Tallo     |            | 90.1           | 0.           | ım af laat  | time (a)           |              |               | 16.0         |            |                                                                                                               |              |
| Intersection Capacity Utilization                  |           |            | 90.1<br>76.1%  |              | um of lost  | of Service         |              |               | 16.0<br>D    |            |                                                                                                               |              |
| Analysis Period (min)                              |           |            | 15.1%          | IC.          | O LEVEL C   | DOINIDE IN         |              |               | U            |            |                                                                                                               |              |
| c Critical Lane Group                              |           |            | เข             |              |             |                    |              |               |              |            |                                                                                                               |              |
| c Offical Lane Group                               |           |            |                |              |             |                    |              |               |              |            |                                                                                                               |              |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>•</i>   |          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |      | +         | 4          | 4       | 4    | _       | \ <u> </u> | ı    | 1      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|----------------------------------------|------|-----------|------------|---------|------|---------|------------|------|--------|
| The second section of the second section is a second section of the sec |            | <b>→</b> | •                                      | •    |           | `          | 7       | 1    |         | <b>P</b>   |      | 4      |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EBL        | EBT      | EBR                                    | WBL  | WBT       | WBR        | NBL     | NBT  | NBR     | SBL        | SBT  | SBR    |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T          | 1        |                                        |      | ተኈ        |            | 7       | 4    |         |            |      |        |
| Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 317        | 34       | 0                                      | 0    | 8         | 1          | 610     | 0    | 66      | 0          | 0    | 0      |
| Ideal Flow (vphpl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1900       | 1900     | 1900                                   | 1900 | 1900      | 1900       | 1900    | 1900 | 1900    | 1900       | 1900 | 1900   |
| Total Lost time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0        | 4.0      |                                        |      | 4.0       |            | 4.0     | 4.0  |         |            |      |        |
| Lane Util. Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00       | 1.00     |                                        |      | 0.95      |            | 0.95    | 0.95 |         |            |      |        |
| Frt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.00       | 1.00     |                                        |      | 0.98      |            | 1.00    | 0.97 |         |            |      |        |
| Flt Protected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.95       | 1.00     |                                        |      | 1.00      |            | 0.95    | 0.96 |         |            |      |        |
| Satd. Flow (prot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1770       | 1863     |                                        |      | 3486      |            | 1681    | 1651 |         |            |      |        |
| FIt Permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.75       | 1.00     |                                        |      | 1.00      |            | 0.95    | 0.96 |         |            |      |        |
| Satd. Flow (perm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1398       | 1863     |                                        |      | 3486      |            | 1681    | 1651 |         |            |      |        |
| Peak-hour factor, PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.92       | 0.92     | 0.92                                   | 0.92 | 0.92      | 0.92       | 0.92    | 0.92 | 0.92    | 0.92       | 0.92 | 0.92   |
| Adj. Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345        | 37       | 0                                      | 0    | 9         | 1          | 663     | 0    | 72      | 0          | 0    | 0      |
| RTOR Reduction (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0          | 0        | 0                                      | 0    | 1         | 0          | 0       | 15   | 0       | 0          | 0    | 0      |
| Lane Group Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 345        | 37       | 0                                      | 0    | 9         | 0          | 371     | 349  | 0       | 0          | 0    | 0      |
| Turn Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Perm       | NA       |                                        |      | NA        |            | Perm    | NA   |         |            |      |        |
| Protected Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 4        |                                        |      | 8         |            |         | 2    |         |            |      |        |
| Permitted Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4          |          |                                        |      |           |            | 2       |      |         |            |      |        |
| Actuated Green, G (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.8       | 15.8     |                                        |      | 15.8      |            | 17.4    | 17.4 |         |            |      |        |
| Effective Green, g (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.8       | 15.8     |                                        |      | 15.8      |            | 17.4    | 17.4 |         |            |      |        |
| Actuated g/C Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.38       | 0.38     |                                        |      | 0.38      |            | 0.42    | 0.42 |         |            |      |        |
| Clearance Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.0        | 4.0      |                                        |      | 4.0       |            | 4.0     | 4.0  |         |            |      |        |
| Vehicle Extension (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0        | 3:0      |                                        |      | 3.0       |            | 3.0     | 3.0  |         |            |      |        |
| Lane Grp Cap (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 536        | 714      |                                        |      | 1336      |            | 709     | 697  |         |            |      |        |
| v/s Ratio Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 0.02     |                                        |      | 0.00      |            | , , ,   | •••  |         |            |      |        |
| v/s Ratio Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c0.25      |          |                                        |      |           |            | c0.22   | 0.21 |         |            |      |        |
| v/c Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.64       | 0.05     |                                        |      | 0.01      |            | 0.52    | 0.50 |         |            |      |        |
| Uniform Delay, d1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.4       | 8.0      |                                        |      | 7.9       |            | 8.8     | 8.7  |         |            |      |        |
| Progression Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00       | 1.00     |                                        |      | 1.00      |            | 1.00    | 1.00 |         |            |      |        |
| Incremental Delay, d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6        | 0.0      |                                        |      | 0.0       |            | 0.7     | 0.6  |         |            |      |        |
| Delay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.0       | 8.0      |                                        |      | 7.9       |            | 9.5     | 9.3  |         |            |      |        |
| Level of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В          | Α        |                                        |      | Α         |            | A       | Α    |         |            |      |        |
| Approach Delay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 12.6     |                                        |      | 7.9       |            | • •     | 9.4  |         |            | 0.0  |        |
| Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | В        |                                        |      | Α         |            |         | A    |         |            | Α    |        |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |          |                                        |      |           | MAGIS      |         |      | TALLY . |            | AR.A | len Hi |
| HCM 2000 Control Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |          | 10.5                                   | НС   | CM 2000   | Level of S | Service |      | В       |            |      |        |
| HCM 2000 Volume to Capa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | city ratio |          | 0.58                                   |      |           |            |         |      |         |            |      |        |
| Actuated Cycle Length (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |          | 41.2                                   |      | m of lost |            |         |      | 8.0     |            |      |        |
| Intersection Capacity Utiliza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion       |          | 53.3%                                  | IC   | U Level o | f Service  |         |      | Α       |            |      |        |
| Analysis Period (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          | 15                                     |      |           |            |         |      |         |            |      |        |
| c Critical Lane Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |                                        |      |           |            |         |      |         |            |      |        |

|                                                                                                                 | -            | •            | 1                  | <b>—</b>                 | 4            | P          |   |
|-----------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------------|--------------------------|--------------|------------|---|
| Movement                                                                                                        | EBT          | EBR          | WBL                | WBT                      | NBL          | NBR        |   |
| Lane Configurations Volume (veh/h) Sign Control                                                                 | 352<br>Free  | 1048         | 5                  | <b>↑↑</b><br>612<br>Free | 0<br>Stop    | 0          |   |
| Grade<br>Peak Hour Factor                                                                                       | 0%<br>0.92   | 0.92         | 0.92               | 0%<br>0.92               | 0%<br>0.92   | 0.92       |   |
| Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) | 383          | 1139         | 5                  | 665                      | 0.92         | 0.92       |   |
| Median type Median storage veh)                                                                                 | None         |              |                    | None                     |              |            |   |
| Upstream signal (ft)<br>pX, platoon unblocked                                                                   |              |              |                    | 1319                     |              |            |   |
| vC, conflicting volume<br>vC1, stage 1 conf vol<br>vC2, stage 2 conf vol                                        |              |              | 1522               |                          | 726          | 383        |   |
| vCu, unblocked vol                                                                                              |              |              | 1522               |                          | 726          | 383        |   |
| tC, single (s)<br>tC, 2 stage (s)                                                                               |              |              | 4.1                |                          | 6.8          | 6.9        |   |
| tF(s)                                                                                                           |              |              | 2.2                |                          | 3.5          | 3.3        |   |
| p0 queue free %<br>cM capacity (veh/h)                                                                          |              |              | 99<br>434          |                          | 100<br>355   | 100<br>615 |   |
| Direction, Lane #                                                                                               | EB 1         | EB 2         | WB 1               | WB 2                     | WB 3         |            |   |
| Volume Total                                                                                                    | 762          | 759          | 5                  | 333                      | 333          |            |   |
| Volume Left                                                                                                     | 0            | 0            | 5                  | 0                        | 0            |            |   |
| Volume Right                                                                                                    | 380          | 759          | 0                  | 0                        | 0            |            |   |
| cSH<br>Volume to Capacity                                                                                       | 1700<br>0.45 | 1700<br>0.45 | 434<br>0.01        | 1700<br>0.20             | 1700<br>0.20 |            |   |
| Queue Length 95th (ft)                                                                                          | 0.45         | 0.43         | 1                  | 0.20                     | 0.20         |            |   |
| Control Delay (s)                                                                                               | 0.0          | 0.0          | 13.4               | 0.0                      | 0.0          |            |   |
| Lane LOS                                                                                                        | 0.0          | 0.0          | 15.4<br>B          | 0.0                      | 0.0          |            |   |
| Approach Delay (s) Approach LOS                                                                                 | 0.0          |              | 0.1                |                          |              |            |   |
| Intersection Summary                                                                                            |              | 19 1940      |                    |                          |              |            |   |
| Average Delay<br>Intersection Capacity Utilization<br>Analysis Period (min)                                     | on           |              | 0.0<br>53.3%<br>15 | IC                       | U Level o    | f Service  | A |

| -                                             | •           | 4           | 1              | ~           | 1         | ļ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------|-------------|-------------|----------------|-------------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Movement                                      | WBL         | WBR         | NBT            | NBR         | SBL       | SBT        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lane Configurations                           | ሻ           | Ţ.          | ተተ             | 7           | 100       | र्भ        | 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Volume (veh/h)                                | 142         | 152         | 1851           | 104         | 1         | _ 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sign Control                                  | Stop        |             | Free           |             |           | Free       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Grade<br>Peak Hour Factor                     | 0%          | 0.00        | 0%             | 0.00        | 0.00      | 0%         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hourly flow rate (vph)                        | 0.92<br>154 | 0.92<br>165 | 0.92           | 0.92<br>113 | 0.92      | 0.92       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pedestrians                                   | 104         | 100         | 2012           | 113         | 1         | 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lane Width (ft)                               |             |             |                |             |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Walking Speed (ft/s)                          |             |             |                |             |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Percent Blockage                              |             |             |                |             |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Right turn flare (veh)                        |             |             |                |             |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Median type                                   |             |             | None           |             |           | None       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Median storage veh)                           |             |             |                |             |           | ,,,,,,     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Upstream signal (ft)                          |             |             |                |             |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pX, platoon unblocked                         |             |             |                |             |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| vC, conflicting volume                        | 2014        | 1006        |                |             | 2125      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| vC1, stage 1 conf vol                         |             |             |                |             |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| vC2, stage 2 conf vol                         |             |             |                |             |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| vCu, unblocked vol                            | 2014        | 1006        |                |             | 2125      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tC, single (s)                                | 6.8         | 6.9         |                |             | 4.1       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tC, 2 stage (s)<br>tF (s)                     | 3.5         | 3.3         |                |             | 2.2       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| p0 queue free %                               | 0           | 31          |                |             | 100       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cM capacity (veh/h)                           | 51          | 239         |                |             | 253       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Direction, Lane #                             | WB 1        | WB 2        | NB 1           | NB 2        | NB 3      | SB 1       | Control of the Contro |
| Volume Total                                  | 154         | 165         | 1006           | 1006        | 113       | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Volume Left                                   | 154         | 0           | 0              | 0           | 0         | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Volume Right                                  | 0           | 165         | 0              | Ō           | 113       | Ó          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cSH                                           | 51          | 239         | 1700           | 1700        | 1700      | 253        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Volume to Capacity                            | 3.04        | 0.69        | 0.59           | 0.59        | 0.07      | 0.00       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Queue Length 95th (ft)                        | Err         | 113         | 0              | 0           | 0         | 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Control Delay (s)                             | Err         | 48.0        | 0.0            | 0.0         | 0.0       | 19.3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lane LOS                                      | F           | Е           |                |             |           | С          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Approach Delay (s)                            | 4854.3      |             | 0.0            |             |           | 19.3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Approach LOS                                  | F           |             |                |             | w         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ntersection Summary                           | declar in   |             | 004.0          |             | Haracle   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Average Delay<br>Intersection Capacity Utiliz | ration      |             | 634.3<br>67.2% | ic          | U Level o | f Service  | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Analysis Period (min)                         | -44011      |             | 15             | 10          | O FEARI ( | I SEI VICE | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|                                           | Þ            | -            | •         | *            | -            | 4               | 1           | †          | P           | 1           | ţ           | 4          |
|-------------------------------------------|--------------|--------------|-----------|--------------|--------------|-----------------|-------------|------------|-------------|-------------|-------------|------------|
| Movement                                  | EBL          | EBT          | EBR       | WBL          | WBT          | WBR             | NBL         | NBT        | NBR         | SBL         | SBT         | SBR        |
| Lane Configurations                       |              | <b>∱</b> ∱   |           | F)           | <b>^</b>     |                 | 7           | 1.500      | 77          | -0000       | र्स         | 78         |
| Volume (vph)                              | 0            | 665          | 81        | 398          | 887          | 0               | 84          | 0          | 754         | 19          | 208         | 193        |
| Ideal Flow (vphpl)                        | 1900         | 1900         | 1900      | 1900         | 1900         | 1900            | 1900        | 1900       | 1900        | 1900        | 1900        | 1900       |
| Total Lost time (s)                       |              | 4.0          |           | 4.0          | 4.0          |                 | 4.0         |            | 4.0         |             | 4.0         | 4.0        |
| Lane Util. Factor                         |              | 0.95         |           | 1.00         | 0.95         |                 | 1,00        |            | 1.00        |             | 1.00        | 1.00       |
| Frt                                       |              | 0.98         |           | 1.00         | 1.00         |                 | 1.00        |            | 0.85        |             | 1.00        | 0.85       |
| Fit Protected                             |              | 1.00         |           | 0.95         | 1.00         |                 | 0.95        |            | 1.00        |             | 1.00        | 1.00       |
| Satd. Flow (prot)                         |              | 3482         |           | 1770         | 3539         |                 | 1770        |            | 1583        |             | 1855        | 1583       |
| Flt Permitted                             |              | 1.00         |           | 0.95         | 1.00         |                 | 0.95        |            | 1.00        |             | 1.00        | 1.00       |
| Satd. Flow (perm)                         |              | 3482         |           | 1770         | 3539         |                 | 1770        |            | 1583        |             | 1855        | 1583       |
| Peak-hour factor, PHF                     | 0.92         | 0.92         | 0.92      | 0.92         | 0.92         | 0.92            | 0.92        | 0.92       | 0.92        | 0.92        | 0.92        | 0.92       |
| Adj. Flow (vph)                           | 0            | 723          | 88        | 433          | 964          | 0               | 91          | 0          | 820         | 21          | 226         | 210        |
| RTOR Reduction (vph)                      | 0            | 8            | 0         | 0            | 0            | 0               | 0           | 0          | 519         | 0           | 0           | 178        |
| Lane Group Flow (vph)                     | 0            | 803          | 0         | 433          | 964          | 0               | 91          | 0          | 301         | 0           | 247         | 32         |
| Tum Type                                  |              | NA           |           | Prot         | NA           |                 | Prot        |            | Perm        | Split       | NA          | Perm       |
| Protected Phases                          |              | 4            |           | 3            | 8            |                 | 5           |            | _           | 6           | 6           |            |
| Permitted Phases                          |              | 07.4         |           | 00.4         | 00.0         |                 | 00.7        |            | 5           |             | 47.0        | 6          |
| Actuated Green, G (s)                     |              | 27.1<br>27.1 |           | 29.1         | 60.2         |                 | 23.7        |            | 23.7        |             | 17.2        | 17.2       |
| Effective Green, g (s) Actuated g/C Ratio |              | 0.24         |           | 29.1<br>0.26 | 60.2<br>0.53 |                 | 23.7        |            | 23.7        |             | 17.2        | 17.2       |
| Clearance Time (s)                        |              | 4.0          |           | 4.0          | 4.0          |                 | 0.21<br>4.0 |            | 0.21<br>4.0 |             | 0.15<br>4.0 | 0.15       |
| Vehicle Extension (s)                     |              | 3.0          |           | 3.0          | 3.0          |                 | 3.0         |            | 3.0         |             | 3.0         | 4.0<br>3.0 |
| Lane Grp Cap (vph)                        |              | 834          |           | 455          | 1883         |                 | 370         |            |             |             |             |            |
| v/s Ratio Prot                            |              | c0.23        |           | 400<br>c0.24 | 0.27         |                 | 0.05        |            | 331         |             | 282         | 240        |
| v/s Ratio Perm                            |              | 60.23        |           | 00.24        | 0.27         |                 | 0.05        |            | c0.19       |             | c0.13       | 0.02       |
| v/c Ratio                                 |              | 0.96         |           | 0.95         | 0.51         |                 | 0.25        |            | 0.91        |             | 0.88        | 0.02       |
| Uniform Delay, d1                         |              | 42.5         |           | 41.3         | 17.0         |                 | 37.3        |            | 43.7        |             | 46.9        | 41.5       |
| Progression Factor                        |              | 1.00         |           | 1.00         | 1.00         |                 | 1.00        |            | 1.00        |             | 1.00        | 1.00       |
| Incremental Delay, d2                     |              | 22.5         |           | 30.1         | 0.2          |                 | 0.3         |            | 28.0        |             | 24.7        | 0.3        |
| Delay (s)                                 |              | 65.0         |           | 71.4         | 17.2         |                 | 37.6        |            | 71.7        |             | 71.6        | 41.8       |
| Level of Service                          |              | E            |           | Ë            | B            |                 | D           |            | E           |             | E           | D          |
| Approach Delay (s)                        |              | 65.0         |           | _            | 34.0         |                 |             | 68.3       | _           |             | 57.9        |            |
| Approach LOS                              |              | E            |           |              | C            |                 |             | E          |             |             | E           |            |
| Intersection Summary                      | III TOESA    |              | VOSUCEINO | Carlo San    | n day in the | EAST CONTRACTOR | TANGE BY    |            |             | TO LEGICAL  | VESTARS:    | SAME SIGN  |
| HCM 2000 Control Delay                    | All Boltonia | CO-F IR CO   | 52.8      | ATTENDED OF  | CM 2000      | Level of S      | onvioo      | an expense | D           | Sign of the | A TOLAY IT  |            |
| HCM 2000 Volume to Capacity               | ratio        |              | 0.93      |              | CIVI 2000    | reveloi 9       | ervice      |            | U           |             |             |            |
| Actuated Cycle Length (s)                 | allu         |              | 113.1     | o.           | um of lost   | time (c)        |             |            | 16.0        |             |             |            |
| Intersection Capacity Utilization         |              |              | 89.6%     |              | U Level o    |                 |             |            | 10.0<br>E   |             |             |            |
| Analysis Period (min)                     |              |              | 15        | iC           | O FEARI (    | N OEI VIUE      |             |            | E           |             |             |            |
| c Critical Lane Group                     |              |              | 15        |              |              |                 |             |            |             |             |             |            |
| o Officer Laife Group                     |              |              |           |              |              |                 |             |            |             |             |             |            |

|                                   | ١     | <b>→</b> | •     | 1    | <b>—</b>  | 4          | 4       | †     | P     | -    | ļ      | 1    |
|-----------------------------------|-------|----------|-------|------|-----------|------------|---------|-------|-------|------|--------|------|
| Movement                          | EBL   | EBT      | EBR   | WBL  | WBT       | WBR        | NBL     | NBT   | NBR   | SBL  | SBT    | SBR  |
| Lane Configurations               | 7     | 1        |       |      | <b>^</b>  |            | ሻ       | 4     |       |      |        |      |
| Volume (vph)                      | 0     | 550      | 57    | 0    | 54        | 32         | 1258    | 0     | 25    | 0    | 0      | 0    |
| Ideal Flow (vphpl)                | 1900  | 1900     | 1900  | 1900 | 1900      | 1900       | 1900    | 1900  | 1900  | 1900 | 1900   | 1900 |
| Total Lost time (s)               |       | 4.0      |       |      | 4.0       |            | 4.0     | 4.0   |       |      |        |      |
| Lane Util. Factor                 |       | 1.00     |       |      | 0.95      |            | 0.95    | 0.95  |       |      |        |      |
| Frt                               |       | 0.99     |       |      | 0.94      |            | 1.00    | 0.99  |       |      |        |      |
| Flt Protected                     |       | 1.00     |       |      | 1.00      |            | 0.95    | 0.95  |       |      |        |      |
| Satd. Flow (prot)                 |       | 1836     |       |      | 3342      |            | 1681    | 1679  |       |      |        |      |
| FIt Permitted                     |       | 1.00     |       |      | 1.00      |            | 0.95    | 0.95  |       |      |        |      |
| Satd. Flow (perm)                 |       | 1836     |       |      | 3342      |            | 1681    | 1679  |       |      |        |      |
| Peak-hour factor, PHF             | 0.92  | 0.92     | 0.92  | 0.92 | 0.92      | 0.92       | 0.92    | 0.92  | 0.92  | 0.92 | 0.92   | 0.92 |
| Adj. Flow (vph)                   | 0     | 598      | 62    | 0    | 59        | 35         | 1367    | 0     | 27    | 0    | 0      | 0    |
| RTOR Reduction (vph)              | 0     | 4        | 0     | 0    | 21        | 0          | 0       | 7     | 0     | 0    | 0      | 0    |
| Lane Group Flow (vph)             | 0     | 656      | 0     | 0    | 73        | 0          | 697     | 690   | 0     | 0    | 0      | 0    |
|                                   | Perm  | NA       |       |      | NA        |            | Perm    | NA    |       |      |        |      |
| Protected Phases                  |       | 4        |       |      | 8         |            |         | 2     |       |      |        |      |
| Permitted Phases                  | 4     |          |       |      |           |            | 2       |       |       |      |        |      |
| Actuated Green, G (s)             |       | 30.7     |       |      | 30.7      |            | 37.6    | 37.6  |       |      |        |      |
| Effective Green, g (s)            |       | 30.7     |       |      | 30.7      |            | 37.6    | 37.6  |       |      |        |      |
| Actuated g/C Ratio                |       | 0.40     |       |      | 0.40      |            | 0.49    | 0.49  |       |      |        |      |
| Clearance Time (s)                |       | 4.0      |       |      | 4.0       |            | 4.0     | 4.0   |       |      |        |      |
| Vehicle Extension (s)             |       | 3.0      |       |      | 3.0       |            | 3.0     | 3.0   |       |      |        |      |
| Lane Grp Cap (vph)                |       | 738      |       |      | 1344      |            | 828     | 827   |       |      |        |      |
| v/s Ratio Prot                    |       | c0.36    |       |      | 0.02      |            |         |       |       |      |        |      |
| v/s Ratio Perm                    |       |          |       |      |           |            | c0.41   | 0.41  |       |      |        |      |
| v/c Ratio                         |       | 0.89     |       |      | 0.05      |            | 0.84    | 0.83  |       |      |        |      |
| Uniform Delay, d1                 |       | 21.2     |       |      | 13.9      |            | 16.8    | 16.7  |       |      |        |      |
| Progression Factor                |       | 1.00     |       |      | 1.00      |            | 1.00    | 1.00  |       |      |        |      |
| Incremental Delay, d2             |       | 12.6     |       |      | 0.0       |            | 7.8     | 7.3   |       |      |        |      |
| Delay (s)                         |       | 33.8     |       |      | 13.9      |            | 24.5    | 24.0  |       |      |        |      |
| Level of Service                  |       | С        |       |      | В         |            | С       | С     |       |      |        |      |
| Approach Delay (s)                |       | 33.8     |       |      | 13.9      |            |         | 24.2  |       |      | 0.0    |      |
| Approach LOS                      |       | С        |       |      | В         |            |         | С     |       |      | Α      |      |
| Intersection Summary              | 3235  |          |       |      |           |            |         | 4,147 | SUMP. |      | 15H-78 |      |
| HCM 2000 Control Delay            |       |          | 26.7  | Н    | CM 2000   | Level of S | Service |       | С     |      |        |      |
| HCM 2000 Volume to Capacity i     | ratio |          | 0.86  |      |           |            |         |       |       |      |        |      |
| Actuated Cycle Length (s)         |       |          | 76.3  | Su   | m of lost | time (s)   |         |       | 8.0   |      |        |      |
| Intersection Capacity Utilization |       |          | 74.7% | IC   | U Level o | f Service  |         |       | D     |      |        |      |
| Analysis Period (min)             |       |          | 15    |      |           |            |         |       |       |      |        |      |
| c Critical Lane Group             |       |          |       |      |           |            |         |       |       |      |        |      |

|                                                                                                                 | -                 | •           | 1                  | <b>←</b>                 | 4               | P          |   |
|-----------------------------------------------------------------------------------------------------------------|-------------------|-------------|--------------------|--------------------------|-----------------|------------|---|
| Movement                                                                                                        | EBT               | EBR         | WBL                | WBT                      | NBL             | NBR        |   |
| Lane Configurations<br>Volume (veh/h)<br>Sign Control<br>Grade                                                  | 607<br>Free<br>0% | 831         | <b>7</b><br>27     | ↑↑<br>1285<br>Free<br>0% | 0<br>Stop<br>0% | 0          |   |
| Peak Hour Factor                                                                                                | 0.92              | 0.92        | 0.92               | 0.92                     | 0.92            | 0.92       |   |
| Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) | 660               | 903         | 29                 | 1397                     | 0               | 0          |   |
| Median type<br>Median storage veh)                                                                              | None              |             |                    | None                     |                 |            |   |
| Upstream signal (ft)<br>pX, platoon unblocked                                                                   |                   |             |                    | 1319                     |                 |            |   |
| vC, conflicting volume<br>vC1, stage 1 conf vol<br>vC2, stage 2 conf vol                                        |                   |             | 1563               |                          | 1417            | 660        |   |
| vCu, unblocked vol                                                                                              |                   |             | 1563               |                          | 1417            | 660        |   |
| tC, single (s)<br>tC, 2 stage (s)                                                                               |                   |             | 4.1                |                          | 6.8             | 6.9        |   |
| tF (s)                                                                                                          |                   |             | 2.2                |                          | 3.5             | 3.3        |   |
| p0 queue free %<br>cM capacity (veh/h)                                                                          |                   |             | 93<br>419          |                          | 100<br>119      | 100<br>406 |   |
| Direction, Lane #                                                                                               | EB 1              | EB 2        | WB 1               | WB2                      | WB 3            |            |   |
| Volume Total                                                                                                    | 961               | 602         | 29                 | 698                      | 698             |            |   |
| Volume Left                                                                                                     | 0                 | 0           | 29                 | 0                        | 0               |            |   |
| Volume Right<br>cSH                                                                                             | 301<br>1700       | 602<br>1700 | 0<br>419           | 0                        | 0               |            |   |
| Volume to Capacity                                                                                              | 0.57              | 0.35        | 0.07               | 1700<br>0.41             | 1700<br>0.41    |            |   |
| Queue Length 95th (ft)                                                                                          | 0.07              | 0.55        | 6                  | 0.41                     | 0               |            |   |
| Control Delay (s)                                                                                               | 0.0               | 0.0         | 14.2               | 0.0                      | 0.0             |            |   |
| Lane LOS                                                                                                        | 0.0               | 0.0         | В                  | 0.0                      | 0.0             |            |   |
| Approach Delay (s)<br>Approach LOS                                                                              | 0.0               |             | 0.3                |                          |                 |            |   |
| Intersection Summary                                                                                            | SIL X             | Salak.      |                    |                          |                 |            |   |
| Average Delay<br>Intersection Capacity Utilization<br>Analysis Period (min)                                     | 1                 |             | 0.1<br>52.2%<br>15 | IC                       | U Level o       | f Service  | A |

|                              |        |       | -      | 440000000000000000000000000000000000000 | 1000      |            |        |
|------------------------------|--------|-------|--------|-----------------------------------------|-----------|------------|--------|
|                              | 1      | *     | †      | -                                       | -         | 1          |        |
| Movement                     | WBL    | WBR   | NBT    | NBR                                     | SBL       | SBT        |        |
| Lane Configurations          | 7      | 7     | 个个     | 7                                       |           | र्भ        |        |
| Volume (veh/h)               | 256    | 242   | 1851   | 104                                     | 1         | 0          |        |
| Sign Control                 | Stop   |       | Free   |                                         |           | Free       |        |
| Grade                        | 0%     |       | 0%     |                                         |           | 0%         |        |
| Peak Hour Factor             | 0.92   | 0.92  | 0.92   | 0.92                                    | 0.92      | 0.92       |        |
| Hourly flow rate (vph)       | 278    | 263   | 2012   | 113                                     | 1         | 0          |        |
| Pedestrians                  |        |       |        |                                         |           |            |        |
| Lane Width (ft)              |        |       |        |                                         |           |            |        |
| Walking Speed (ft/s)         |        |       |        |                                         |           |            |        |
| Percent Blockage             |        |       |        |                                         |           |            |        |
| Right turn flare (veh)       |        |       |        |                                         |           |            |        |
| Median type                  |        |       | None   |                                         |           | None       |        |
| Median storage veh)          |        |       |        |                                         |           |            |        |
| Upstream signal (ft)         |        |       |        |                                         |           |            |        |
| pX, platoon unblocked        |        |       |        |                                         |           |            |        |
| vC, conflicting volume       | 2014   | 1006  |        |                                         | 2125      |            |        |
| vC1, stage 1 conf vol        |        |       |        |                                         |           |            |        |
| vC2, stage 2 conf vol        |        |       |        |                                         |           |            |        |
| vCu, unblocked vol           | 2014   | 1006  |        |                                         | 2125      |            |        |
| tC, single (s)               | 6.8    | 6.9   |        |                                         | 4.1       |            |        |
| tC, 2 stage (s)              |        |       |        |                                         |           |            |        |
| tF (s)                       | 3.5    | 3.3   |        |                                         | 2.2       |            |        |
| p0 queue free %              | 0      | 0     |        |                                         | 100       |            |        |
| cM capacity (veh/h)          | 51     | 239   |        |                                         | 253       |            |        |
| Direction, Lane #            | WB 1   | WB 2  | NB 1   | NB 2                                    | NB 3      | SB 1       | 5      |
| Volume Total                 | 278    | 263   | 1006   | 1006                                    | 113       | 1          |        |
| Volume Left                  | 278    | 0     | 0      | 0                                       | 0         | 1          |        |
| Volume Right                 | 0      | 263   | 0      | 0                                       | 113       | 0          |        |
| cSH                          | 51     | 239   | 1700   | 1700                                    | 1700      | 253        |        |
| Volume to Capacity           | 5.48   | 1.10  | 0.59   | 0.59                                    | 0.07      | 0.00       |        |
| Queue Length 95th (ft)       | Err    | 288   | 0      | 0                                       | 0         | 0          |        |
| Control Delay (s)            | Err    | 131.5 | 0.0    | 0.0                                     | 0.0       | 19.3       |        |
| Lane LOS                     | F      | F     |        |                                         |           | С          |        |
| Approach Delay (s)           | 5203.9 |       | 0.0    |                                         |           | 19.3       |        |
| Approach LOS                 | F      |       |        |                                         |           |            |        |
| Intersection Summary         |        | 当集建   | 1940   |                                         | E.U.Y.S   |            | To the |
| Average Delay                |        |       | 1056.1 |                                         |           |            |        |
| Intersection Capacity Utili: | zation |       | 72.8%  | IC                                      | U Level o | of Service | Э      |
| Analysis Period (min)        |        |       | 15     |                                         |           |            |        |

|                                                             | ♪         | <b>→</b>   | •              | •                   | <b>←</b>     | 4          | 4            | 1    | 1            | >               | ļ            | 4            |
|-------------------------------------------------------------|-----------|------------|----------------|---------------------|--------------|------------|--------------|------|--------------|-----------------|--------------|--------------|
| Movement                                                    | EBL       | EBT        | EBR            | WBL                 | WBT          | WBR        | NBL          | NBT  | NBR          | SBL             | SBT          | SBR          |
| Lane Configurations                                         |           | <b>↑</b> ↑ |                | J.                  | <b>^</b>     |            | 7            |      | 7            |                 | र्स          | 7            |
| Volume (vph)                                                | 0         | 665        | 81             | 398                 | 887          | 0          | 84           | 0    | 754          | 19              | 208          | 193          |
| Ideal Flow (vphpl)                                          | 1900      | 1900       | 1900           | 1900                | 1900         | 1900       | 1900         | 1900 | 1900         | 1900            | 1900         | 1900         |
| Total Lost time (s)                                         |           | 4.0        |                | 4.0                 | 4.0          |            | 4.0          |      | 4.0          |                 | 4.0          | 4.0          |
| Lane Util. Factor                                           |           | 0.95       |                | 1.00                | 0.95         |            | 1.00         |      | 1.00         |                 | 1.00         | 1.00         |
| Frt                                                         |           | 0.98       |                | 1.00                | 1.00         |            | 1.00         |      | 0.85         |                 | 1.00         | 0.85         |
| Flt Protected                                               |           | 1.00       |                | 0.95                | 1.00         |            | 0.95         |      | 1.00         |                 | 1.00         | 1.00         |
| Satd. Flow (prot)                                           |           | 3482       |                | 1770                | 3539         |            | 1770         |      | 1583         |                 | 1855         | 1583         |
| Flt Permitted                                               |           | 1.00       |                | 0.95                | 1.00         |            | 0.95         |      | 1.00         |                 | 1.00         | 1.00         |
| Satd. Flow (perm)                                           |           | 3482       |                | 1770                | 3539         |            | 1770         |      | 1583         |                 | 1855         | 1583         |
| Peak-hour factor, PHF                                       | 0.92      | 0.92       | 0.92           | 0.92                | 0.92         | 0.92       | 0.92         | 0.92 | 0.92         | 0.92            | 0.92         | 0.92         |
| Adj. Flow (vph)                                             | 0         | 723        | 88             | 433                 | 964          | 0          | 91           | 0    | 820          | 21              | 226          | 210          |
| RTOR Reduction (vph)                                        | 0         | * 8        | 0              | 0                   | 0            | 0          | 0            | 0    | 519          | 0               | 0            | 178          |
| Lane Group Flow (vph)                                       | 0         | 803        | 0              | 433                 | 964          | 0          | 91           | 0    | 301          | 0               | 247          | 32           |
| Tum Type                                                    |           | NA         |                | Prot                | NA           |            | Prot         |      | Perm         | Split           | NA           | Perm         |
| Protected Phases                                            |           | 4          |                | 3                   | 8            |            | 5            |      | _            | 6               | 6            | _            |
| Permitted Phases                                            |           |            |                |                     |              |            |              |      | 5            |                 |              | 6            |
| Actuated Green, G (s)                                       |           | 27.1       |                | 29.1                | 60.2         |            | 23.7         |      | 23.7         |                 | 17.2         | 17.2         |
| Effective Green, g (s)                                      |           | 27.1       |                | 29.1                | 60.2         |            | 23.7         |      | 23.7         |                 | 17.2         | 17.2         |
| Actuated g/C Ratio                                          |           | 0.24       |                | 0.26                | 0.53         |            | 0.21         |      | 0.21         |                 | 0.15         | 0.15         |
| Clearance Time (s)                                          |           | 4.0        |                | 4.0                 | 4.0          |            | 4.0          |      | 4.0          |                 | 4.0          | 4.0          |
| Vehicle Extension (s)                                       |           | 3.0        |                | 3.0                 | 3.0          |            | 3.0          |      | 3.0          |                 | 3.0          | 3.0          |
| Lane Grp Cap (vph) v/s Ratio Prot                           |           | 834        |                | 455                 | 1883         |            | 370          |      | 331          |                 | 282          | 240          |
|                                                             |           | c0.23      |                | c0.24               | 0.27         |            | 0.05         |      | .0.40        |                 | c0.13        | 0.00         |
| v/s Ratio Perm<br>v/c Ratio                                 |           | 0.96       |                | 0.05                | 0.54         |            | 0.05         |      | c0.19        |                 | 0.00         | 0.02         |
| Uniform Delay, d1                                           |           | 42.5       |                | 0.95<br>41.3        | 0.51<br>17.0 |            | 0.25<br>37.3 |      | 0.91<br>43.7 |                 | 0.88         | 0.13<br>41.5 |
| Progression Factor                                          |           | 1.00       |                | 1.00                | 1.00         |            | 1.00         |      | 43.7<br>1.00 |                 | 46.9<br>1.00 | 1.00         |
| Incremental Delay, d2                                       |           | 22.5       |                | 30.1                | 0.2          |            | 0.3          |      | 28.0         |                 | 24.7         | 0.3          |
| Delay (s)                                                   |           | 65.0       |                | 71.4                | 17.2         |            | 37.6         |      | 71.7         |                 | 71.6         | 41.8         |
| Level of Service                                            |           | 65.6<br>E  |                | E                   | В            |            | 57,0<br>D    |      | , (.,,       |                 | 71.0<br>E    | 41.0<br>D    |
| Approach Delay (s)                                          |           | 65.0       |                | -                   | 34.0         |            | U            | 68.3 | _            |                 | 57.9         | U            |
| Approach LOS                                                |           | E          |                |                     | 04.0<br>C    |            |              | E    |              |                 | E            |              |
|                                                             | SKYSUSTER | - METRICAL | MINISTER OF    | TO COMPANY THE SAME |              | UNITED ITS | netea es     | -    | TOTAL WITH B | WWW. T. S. 1987 | EN IN COLUMN | THE RESERVE  |
| Intersection Summary                                        | A Page 1  |            | 50.0           |                     | 014 0000     | RECEIVE.   | 174 1856     |      |              |                 |              |              |
| HCM 2000 Control Delay HCM 2000 Volume to Capacity          | rotio     |            | 52.8<br>0.93   | Н                   | CIVI 2000    | Level of S | ervice       |      | D            |                 |              |              |
|                                                             | rauo      |            |                | 0.                  | 61 4         | Cara tal   |              |      | 40.0         |                 |              |              |
| Actuated Cycle Length (s) Intersection Capacity Utilization |           |            | 113.1<br>89.6% |                     | um of lost   |            |              |      | 16.0         |                 |              |              |
| Analysis Period (min)                                       |           |            | 89.6%<br>15    | IC                  | U Level o    | oetvice    |              |      | Ε            |                 |              |              |
| c Critical Lane Group                                       |           |            | 13             |                     |              |            |              |      |              |                 |              |              |
| o Ontioai Laife Group                                       |           |            |                |                     |              |            |              |      |              |                 |              |              |

|                                 | ۶         | <b>→</b> | •     | •    | 4-        | 4          | 1        | †       | P       | 1    | <b>↓</b> | 1    |
|---------------------------------|-----------|----------|-------|------|-----------|------------|----------|---------|---------|------|----------|------|
| Movement                        | EBL       | EBT      | EBR   | WBL  | WBT       | WBR        | NBL      | NBT     | NBR     | SBL  | SBT      | SBR  |
| Lane Configurations             | Y         | 1        |       |      | 朴净        |            | 7        | 4       |         |      |          |      |
| Volume (vph)                    | 550       | 57       | 0     | 0    | 228       | 62         | 1258     | 0       | 25      | 0    | 0        | 0    |
| ldeal Flow (vphpl)              | 1900      | 1900     | 1900  | 1900 | 1900      | 1900       | 1900     | 1900    | 1900    | 1900 | 1900     | 1900 |
| Total Lost time (s)             | 4.0       | 4.0      |       |      | 4.0       |            | 4.0      | 4.0     |         |      |          |      |
| Lane Util. Factor               | 1.00      | 1.00     |       |      | 0.95      |            | 0.95     | 0.95    |         |      |          |      |
| Frt                             | 1.00      | 1.00     |       |      | 0.97      |            | 1.00     | 0.99    |         |      |          |      |
| FIt Protected                   | 0.95      | 1,00     |       |      | 1.00      |            | 0.95     | 0.95    |         |      |          |      |
| Satd. Flow (prot)               | 1770      | 1863     |       |      | 3426      |            | 1681     | 1679    |         |      |          |      |
| FIt Permitted                   | 0.56      | 1.00     |       |      | 1.00      |            | 0.95     | 0.95    |         |      |          |      |
| Satd. Flow (perm)               | 1038      | 1863     |       |      | 3426      |            | 1681     | 1679    |         |      |          |      |
| Peak-hour factor, PHF           | 0.92      | 0.92     | 0.92  | 0.92 | 0.92      | 0.92       | 0.92     | 0.92    | 0.92    | 0.92 | 0.92     | 0.92 |
| Adj. Flow (vph)                 | 598       | 62       | 0     | 0    | 248       | 67         | 1367     | 0       | 27      | 0    | 0        | 0    |
| RTOR Reduction (vph)            | 0         | 0        | 0     | 0    | 29        | 0          | 0        | 8       | 0       | 0    | 0        | Ō    |
| Lane Group Flow (vph)           | 598       | 62       | 0     | 0    | 286       | 0          | 697      | 689     | 0       | 0    | Ö        | 0    |
| Tum Type                        | Perm      | NA       |       |      | NA        |            | Perm     | NA      |         |      |          |      |
| Protected Phases                |           | 4        |       |      | 8         |            | ,        | 2       |         |      |          |      |
| Permitted Phases                | 4         |          |       |      |           |            | 2        | _       |         |      |          |      |
| Actuated Green, G (s)           | 42.0      | 42.0     |       |      | 42.0      |            | 34.0     | 34.0    |         |      |          |      |
| Effective Green, g (s)          | 42.0      | 42.0     |       |      | 42.0      |            | 34.0     | 34.0    |         |      |          |      |
| Actuated g/C Ratio              | 0.50      | 0.50     |       |      | 0.50      |            | 0.40     | 0.40    |         |      |          |      |
| Clearance Time (s)              | 4.0       | 4.0      |       |      | 4.0       |            | 4.0      | 4.0     |         |      |          |      |
| Vehicle Extension (s)           | 3.0       | 3.0      |       |      | 3.0       |            | 3.0      | 3.0     |         |      |          |      |
| Lane Grp Cap (vph)              | 519       | 931      |       |      | 1713      |            | 680      | 679     | 9.50    |      |          |      |
| v/s Ratio Prot                  |           | 0.03     |       |      | 0.08      |            |          | -,-     |         |      |          |      |
| v/s Ratio Perm                  | c0.58     |          |       |      |           |            | c0.41    | 0.41    |         |      |          |      |
| v/c Ratio                       | 1.15      | 0.07     |       |      | 0.17      |            | 1.02     | 1.02    |         |      |          |      |
| Uniform Delay, d1               | 21.0      | 10.9     |       |      | 11.5      |            | 25.0     | 25.0    |         |      |          |      |
| Progression Factor              | 1.00      | 1.00     |       |      | 1.00      |            | 1.00     | 1.00    |         |      |          |      |
| Incremental Delay, d2           | 88.8      | 0.0      |       |      | 0.0       |            | 41.0     | 38.4    |         |      |          |      |
| Delay (s)                       | 109.8     | 10.9     |       |      | 11.5      |            | 66.0     | 63.4    |         |      |          |      |
| Level of Service                | F         | В        |       |      | В         |            | E        | E       |         |      |          |      |
| Approach Delay (s)              |           | 100.5    |       |      | 11.5      |            | _        | 64.7    |         |      | 0.0      |      |
| Approach LOS                    |           | F        |       |      | В         |            |          | E       |         |      | A        |      |
| Intersection Summary            | name i    | AMPL     | Mada  |      | 7037      | NO ALL     | (SIDANGS | 1123153 |         |      |          |      |
| HCM 2000 Control Delay          |           |          | 67.6  | НС   | CM 2000   | Level of S | Service  |         | Ē       |      |          |      |
| HCM 2000 Volume to Capaci       | ity ratio |          | 1.10  |      |           |            |          |         | _       |      |          |      |
| Actuated Cycle Length (s)       |           |          | 84.0  | Su   | m of lost | time (s)   |          |         | 8.0     |      |          |      |
| Intersection Capacity Utilizati | on        |          | 84.4% |      | U Level o | , ,        |          |         | Ε       |      |          |      |
| Analysis Period (min)           |           |          | 15    |      | (SEC)     |            |          |         | 1/17/20 |      |          |      |
| c Critical Lane Group           |           |          |       |      |           |            |          |         |         |      |          |      |

|                                                                                                                                   | <b>→</b>                                    | •                                    | •                                                 | <b>—</b>                           | 4                                  | 1                 |   |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------|---------------------------------------------------|------------------------------------|------------------------------------|-------------------|---|
| Movement                                                                                                                          | EBT                                         | EBR                                  | WBL                                               | WBT                                | NBL                                | NBR               |   |
| Lane Configurations Volume (veh/h) Sign Control Grade                                                                             | 607<br>Free<br>0%                           | 831                                  | 201                                               | ↑↑<br>1285<br>Free<br>0%           | 0<br>Stop<br>0%                    | 0                 |   |
| Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)  | 0.92<br>660                                 | 0.92<br>903                          | 0.92<br>218                                       | 0.92<br>1397                       | 0.92                               | 0.92              |   |
| Median type<br>Median storage veh)<br>Upstream signal (ft)                                                                        | None                                        |                                      |                                                   | None<br>1319                       |                                    |                   |   |
| pX, platoon unblocked<br>vC, conflicting volume<br>vC1, stage 1 conf vol<br>vC2, stage 2 conf vol                                 |                                             |                                      | 1563                                              |                                    | 1795                               | 660               |   |
| vCu, unblocked vol<br>tC, single (s)<br>tC, 2 stage (s)                                                                           |                                             |                                      | 1563<br>4.1                                       |                                    | 1795<br>6.8                        | 660<br>6.9        |   |
| tF (s)<br>p0 queue free %<br>cM capacity (veh/h)                                                                                  |                                             |                                      | 2.2<br>48<br>419                                  |                                    | 3.5<br>100<br>34                   | 3.3<br>100<br>406 |   |
| Direction, Lane #                                                                                                                 | EB 1                                        | EB 2                                 | WB 1                                              | WB 2                               | WB3                                | 5 7 7 5           |   |
| Volume Total Volume Left Volume Right cSH Volume to Capacity Queue Length 95th (ft) Control Delay (s) Lane LOS Approach Delay (s) | 961<br>0<br>301<br>1700<br>0.57<br>0<br>0.0 | 602<br>0<br>602<br>1700<br>0.35<br>0 | 218<br>218<br>0<br>419<br>0.52<br>73<br>22.6<br>C | 698<br>0<br>0<br>1700<br>0,41<br>0 | 698<br>0<br>0<br>1700<br>0.41<br>0 |                   |   |
| Approach LOS                                                                                                                      |                                             |                                      |                                                   |                                    |                                    |                   |   |
| Intersection Summary                                                                                                              |                                             | 4                                    | Sat                                               |                                    |                                    | 70.57             |   |
| Average Delay<br>Intersection Capacity Utilizatio<br>Analysis Period (min)                                                        | n                                           |                                      | 1.6<br>84.4%<br>15                                | IC                                 | U Level o                          | f Service         | E |

|                                                       | 1           | 4         | †            | ~                 | 1          | Ţ             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------|-------------|-----------|--------------|-------------------|------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Movement                                              | WBL         | WBR       | NBT          | NBR               | SBL        | SBT           | CONTRACTOR OF THE STATE OF THE |
| Lane Configurations                                   | ሻ           | 7         | ተተ           | 7                 |            | र्स           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume (veh/h)                                        | 175         | 157       | 1851         | 104               | 1          | _ 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sign Control<br>Grade                                 | Stop        |           | Free         |                   |            | Free          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Peak Hour Factor                                      | 0%<br>0.92  | 0.92      | 0%<br>0.92   | 0.00              | 0.00       | 0%            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Hourly flow rate (vph)                                | 190         | 171       | 2012         | 0.92<br>113       | 0.92<br>1  | 0.92<br>0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pedestrians                                           | 130         | 14.1      | 2012         | 113               |            | U             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lane Width (ft)                                       |             |           |              |                   |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Walking Speed (ft/s)                                  |             |           |              |                   |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Percent Blockage                                      |             |           |              |                   |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Right turn flare (veh)                                |             |           |              |                   |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Median type                                           |             |           | None         |                   |            | None          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Median storage veh)                                   |             |           |              |                   |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Upstream signal (ft)<br>pX, platoon unblocked         |             |           |              |                   |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| vC, conflicting volume                                | 2014        | 1006      |              |                   | 2125       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| vC1, stage 1 conf vol                                 | 2011        | ,,,,,     |              |                   | 2120       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| vC2, stage 2 conf vol                                 |             |           |              |                   |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| vCu, unblocked vol                                    | 2014        | 1006      |              |                   | 2125       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| tC, single (s)                                        | 6.8         | 6.9       |              |                   | 4.1        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| tC, 2 stage (s)                                       |             | • •       |              |                   |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| tF (s)<br>p0 queue free %                             | 3.5         | 3.3       |              |                   | 2.2        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| cM capacity (veh/h)                                   | 0<br>51     | 29<br>239 |              |                   | 100<br>253 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                       |             |           | NID 4        | MDO               |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Direction, Lane # Volume Total                        | WB 1        | WB 2      | NB 1<br>1006 | NB 2<br>1006      | NB 3       | SB 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume Left                                           | 190         | 0         | 1000         | 0                 | 0          | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume Right                                          | 0           | 171       | 0            | Ö                 | 113        | Ó             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| cSH                                                   | 51          | 239       | 1700         | 1700              | 1700       | 253           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Volume to Capacity                                    | 3.75        | 0.71      | 0.59         | 0.59              | 0.07       | 0.00          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Queue Length 95th (ft)                                | Err         | 120       | 0            | . 0               | 0          | 0             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Control Delay (s)                                     | Err         | 50.3      | 0.0          | 0.0               | 0.0        | 19.3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lane LOS                                              | F           | F         |              |                   |            | С             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Approach Delay (s) Approach LOS                       | 5294.4<br>F |           | 0.0          |                   |            | 19.3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Intersection Summary                                  |             | 7.00      | 1000         |                   |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Average Delay                                         |             |           | 768.2        | Television of the | EWS SEV    | Maria Andrews |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Intersection Capacity Utiliz<br>Analysis Period (min) | zation      |           | 67.6%<br>15  | IC                | U Level o  | of Service    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|                                   | ۶     | -           | *     | 1     | <b>←</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4          | 4      | †    | ~     | 1     | Ţ     | 4    |
|-----------------------------------|-------|-------------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|------|-------|-------|-------|------|
| Movement                          | EBL   | EBT         | EBR   | WBL   | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WBR        | NBL    | NBT  | NBR   | SBL   | SBT   | SBR  |
| Lane Configurations               |       | <b>†</b>    |       | F.    | <b>个</b> 个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | ሻ      |      | 74    |       | र्स   | 7    |
| Volume (vph)                      | 0     | 665         | 81    | 398   | 887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0          | 84     | 0    | 754   | 19    | 208   | 193  |
| Ideal Flow (vphpl)                | 1900  | 1900        | 1900  | 1900  | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1900       | 1900   | 1900 | 1900  | 1900  | 1900  | 1900 |
| Total Lost time (s)               |       | 4.0         |       | 4.0   | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 4.0    |      | 4.0   |       | 4.0   | 4.0  |
| Lane Util. Factor                 |       | 0.95        |       | 1.00  | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 1.00   |      | 1.00  |       | 1.00  | 1.00 |
| Frt                               |       | 0.98        |       | 1.00  | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 1.00   |      | 0.85  |       | 1.00  | 0.85 |
| FIt Protected                     |       | 1.00        |       | 0.95  | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.95   |      | 1.00  |       | 1.00  | 1.00 |
| Satd. Flow (prot)                 |       | 3482        |       | 1770  | 3539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 1770   |      | 1583  |       | 1855  | 1583 |
| FIt Permitted                     |       | 1.00        |       | 0.95  | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.95   |      | 1.00  |       | 1.00  | 1.00 |
| Satd. Flow (perm)                 |       | 3482        |       | 1770  | 3539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 1770   |      | 1583  |       | 1855  | 1583 |
| Peak-hour factor, PHF             | 0.92  | 0.92        | 0.92  | 0.92  | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.92       | 0.92   | 0.92 | 0.92  | 0.92  | 0.92  | 0.92 |
| Adj. Flow (vph)                   | 0     | <b>72</b> 3 | 88    | 433   | 964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0          | 91     | 0    | 820   | 21    | 226   | 210  |
| RTOR Reduction (vph)              | 0     | 8           | 0     | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0          | 0      | 0    | 519   | 0     | 0     | 178  |
| Lane Group Flow (vph)             | 0     | 803         | 0     | 433   | 964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0          | 91     | 0    | 301   | 0     | 247   | 32   |
| Tum Type                          |       | NA          |       | Prot  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Prot   |      | Perm  | Split | NA    | Perm |
| Protected Phases                  |       | 4           |       | 3     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 5      |      |       | 6     | 6     |      |
| Permitted Phases                  |       |             |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |      | 5     |       |       | 6    |
| Actuated Green, G (s)             |       | 27.1        |       | 29.1  | 60.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 23.7   |      | 23.7  |       | 17.2  | 17.2 |
| Effective Green, g (s)            |       | 27.1        |       | 29.1  | 60.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 23.7   |      | 23.7  |       | 17.2  | 17.2 |
| Actuated g/C Ratio                |       | 0.24        |       | 0,26  | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.21   |      | 0.21  |       | 0.15  | 0.15 |
| Clearance Time (s)                |       | 4.0         |       | 4.0   | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 4.0    |      | 4.0   |       | 4.0   | 4.0  |
| Vehicle Extension (s)             |       | 3.0         |       | 3.0   | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 3.0    |      | 3.0   |       | 3.0   | 3.0  |
| Lane Grp Cap (vph)                |       | 834         |       | 455   | 1883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 370    |      | 331   |       | 282   | 240  |
| v/s Ratio Prot                    |       | c0.23       |       | c0.24 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.05   |      |       |       | c0.13 |      |
| v/s Ratio Perm                    |       |             |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |      | c0.19 |       |       | 0.02 |
| v/c Ratio                         |       | 0.96        |       | 0.95  | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 0.25   |      | 0.91  |       | 0.88  | 0.13 |
| Uniform Delay, d1                 |       | 42.5        |       | 41.3  | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 37.3   |      | 43.7  |       | 46.9  | 41.5 |
| Progression Factor                |       | 1.00        |       | 1.00  | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 1.00   |      | 1.00  |       | 1.00  | 1.00 |
| Incremental Delay, d2             |       | 22.5        |       | 30.1  | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 0.3    |      | 28.0  |       | 24.7  | 0.3  |
| Delay (s)                         |       | 65.0        |       | 71.4  | 17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 37.6   |      | 71.7  |       | 71.6  | 41.8 |
| Level of Service                  |       | E           |       | E     | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | D      |      | E     |       | E     | D    |
| Approach Delay (s)                |       | 65.0        |       |       | 34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |        | 68.3 |       |       | 57.9  |      |
| Approach LOS                      |       | E           |       |       | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |        | Ε    |       |       | E     |      |
| Intersection Summary              | WIND  | The NAME    | No.   | 6 COK | STATE OF THE STATE | Hale S     |        |      |       |       |       | 門所為  |
| HCM 2000 Control Delay            |       |             | 52.8  | H     | CM 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level of S | ervice |      | D     |       |       |      |
| HCM 2000 Volume to Capacity       | ratio |             | 0.93  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |      |       |       |       |      |
| Actuated Cycle Length (s)         |       |             | 113.1 |       | um of lost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , ,        |        |      | 16.0  |       |       |      |
| Intersection Capacity Utilization |       |             | 89.6% | IC    | U Level o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of Service |        |      | E     |       |       |      |
| Analysis Period (min)             |       |             | 15    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |      |       |       |       |      |
| c Critical Lane Group             |       |             |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |        |      |       |       |       |      |

| ASE DE                         | A         | -    | •     | 1        | <b>←</b>  | 1          | 4       | 1    | P        | 1         | <b>+</b>     | 1                  |
|--------------------------------|-----------|------|-------|----------|-----------|------------|---------|------|----------|-----------|--------------|--------------------|
| Movement                       | EBL       | EBT  | EBR   | WBL      | WBT       | WBR        | NBL     | NBT  | NBR      | SBL       | SBT          | SBR                |
| Lane Configurations            | T         | 1    |       |          | ተቡ        |            | 7       | 4    |          |           |              |                    |
| Volume (vph)                   | 550       | 57   | 0     | 0        | 91        | 34         | 1258    | 0    | 25       | 0         | 0            | 0                  |
| ideal Flow (vphpl)             | 1900      | 1900 | 1900  | 1900     | 1900      | 1900       | 1900    | 1900 | 1900     | 1900      | 1900         | 1900               |
| Total Lost time (s)            | 4.0       | 4.0  |       |          | 4.0       |            | 4.0     | 4.0  |          |           |              |                    |
| Lane Util. Factor              | 1.00      | 1.00 |       |          | 0.95      |            | 0.95    | 0.95 |          |           |              |                    |
| Frt                            | 1.00      | 1.00 |       |          | 0.96      |            | 1.00    | 0.99 |          |           |              |                    |
| Flt Protected                  | 0.95      | 1.00 |       |          | 1.00      |            | 0.95    | 0.95 |          |           |              |                    |
| Satd. Flow (prot)              | 1770      | 1863 |       |          | 3395      |            | 1681    | 1679 |          |           |              |                    |
| FIt Permitted                  | 0.67      | 1.00 |       |          | 1.00      |            | 0.95    | 0.95 |          |           |              |                    |
| Satd. Flow (perm)              | 1240      | 1863 |       |          | 3395      |            | 1681    | 1679 |          |           |              |                    |
| Peak-hour factor, PHF          | 0.92      | 0.92 | 0.92  | 0.92     | 0.92      | 0.92       | 0.92    | 0.92 | 0.92     | 0.92      | 0.92         | 0.92               |
| Adj. Flow (vph)                | 598       | 62   | 0     | 0        | 99        | 37         | 1367    | 0    | 27       | 0         | 0            | 0                  |
| RTOR Reduction (vph)           | 0         | 0    | 0     | 0        | 20        | 0          | 0       | 7    | 0        | 0         | Õ            | Ō                  |
| Lane Group Flow (vph)          | 598       | 62   | 0     | 0        | 116       | 0          | 697     | 690  | 0        | 0         | 0            | 0                  |
| Tum Type                       | Perm      | NA   |       | - Wilson | NA        |            | Perm    | NA   |          |           |              |                    |
| Protected Phases               |           | 4    |       |          | 8         |            |         | 2    |          |           |              |                    |
| Permitted Phases               | 4         |      |       |          |           |            | 2       | _    |          |           |              |                    |
| Actuated Green, G (s)          | 39.0      | 39.0 |       |          | 39.0      |            | 36.7    | 36.7 |          |           |              |                    |
| Effective Green, g (s)         | 39.0      | 39.0 |       |          | 39.0      |            | 36.7    | 36.7 |          |           |              |                    |
| Actuated g/C Ratio             | 0.47      | 0.47 |       |          | 0.47      |            | 0.44    | 0.44 |          |           |              |                    |
| Clearance Time (s)             | 4.0       | 4.0  |       |          | 4.0       |            | 4.0     | 4.0  |          |           |              |                    |
| Vehicle Extension (s)          | 3.0       | 3.0  |       |          | 3.0       |            | 3.0     | 3.0  |          |           |              |                    |
| Lane Grp Cap (vph)             | 577       | 868  |       |          | 1581      |            | 737     | 736  |          | ·· ·      |              | <del>,,,,,,,</del> |
| v/s Ratio Prot                 |           | 0.03 |       |          | 0.03      |            |         |      |          |           |              |                    |
| v/s Ratio Perm                 | c0.48     |      |       |          |           |            | c0.41   | 0.41 |          |           |              |                    |
| v/c Ratio                      | 1.04      | 0.07 |       |          | 0.07      |            | 0.95    | 0.94 |          |           |              |                    |
| Uniform Delay, d1              | 22.4      | 12.3 |       |          | 12.4      |            | 22.5    | 22.4 |          |           |              |                    |
| Progression Factor             | 1.00      | 1.00 |       |          | 1.00      |            | 1.00    | 1.00 |          |           |              |                    |
| Incremental Delay, d2          | 47.2      | 0.0  |       |          | 0.0       |            | 20.8    | 19.3 |          |           |              |                    |
| Delay (s)                      | 69.6      | 12.4 |       |          | 12.4      |            | 43.3    | 41.7 |          |           |              |                    |
| Level of Service               | Ε         | В    |       |          | В         |            | D       | D    |          |           |              |                    |
| Approach Delay (s)             |           | 64.2 |       |          | 12.4      |            |         | 42.5 |          |           | 0.0          |                    |
| Approach LOS                   |           | Ε    |       |          | В         |            |         | D    |          |           | Α            |                    |
| Intersection Summary           |           |      |       |          |           |            |         |      | THE SAME | H A STORY | 62537        |                    |
| HCM 2000 Control Delay         |           |      | 47.2  | НС       | M 2000    | Level of S | Service |      | D        |           | STARS OF THE |                    |
| HCM 2000 Volume to Capac       | ity ratio |      | 0.99  |          |           |            |         |      | _        |           |              |                    |
| Actuated Cycle Length (s)      |           |      | 83.7  | Su       | m of lost | time (s)   |         |      | 8.0      |           |              |                    |
| Intersection Capacity Utilizat | ion       |      | 79.7% |          |           | f Service  |         |      | D        |           |              |                    |
| Analysis Period (min)          |           |      | 15    |          |           |            |         |      |          |           |              |                    |
| c Critical Lane Group          |           |      |       |          |           |            |         |      |          |           |              |                    |

|                                                                                                                 | <b>→</b>    | •        | •                  | <b>←</b>     | 1          | ~          |                                         |
|-----------------------------------------------------------------------------------------------------------------|-------------|----------|--------------------|--------------|------------|------------|-----------------------------------------|
| Movement                                                                                                        | EBT         | EBR      | WBL                | WBT          | NBL        | NBR        | Designation of the second states        |
| Lane Configurations Volume (veh/h) Sign Control Grade                                                           | 607<br>Free | 831      | <b>6</b> 3         | 1285<br>Free | 0<br>Stop  | 0          |                                         |
| Peak Hour Factor                                                                                                | 0%<br>0.92  | 0.92     | 0.92               | 0%<br>0.92   | 0%<br>0.92 | 0.92       |                                         |
| Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) | 660         | 903      | 68                 | 1397         | 0.92       | 0.92       |                                         |
| Median type<br>Median storage veh)                                                                              | None        |          |                    | None         |            |            |                                         |
| Upstream signal (ft)<br>pX, platoon unblocked                                                                   |             |          |                    | 1319         |            |            |                                         |
| vC, conflicting volume<br>vC1, stage 1 conf vol<br>vC2, stage 2 conf vol                                        |             |          | 1563               |              | 1495       | 660        |                                         |
| vCu, unblocked vol                                                                                              |             |          | 1563               |              | 1495       | 660        |                                         |
| tC, single (s)                                                                                                  |             |          | 4.1                |              | 6.8        | 6.9        |                                         |
| tC, 2 stage (s) tF (s)                                                                                          |             |          | 0.0                |              | 2.5        | 2.2        |                                         |
| p0 queue free %                                                                                                 |             |          | 2.2<br>84          |              | 3.5<br>100 | 3.3<br>100 |                                         |
| cM capacity (veh/h)                                                                                             |             |          | 419                |              | 95         | 406        |                                         |
| Direction, Lane #                                                                                               | EB 1        | EB 2     | WB 1               | WB 2         | WB3        | MEAN.      |                                         |
| Volume Total                                                                                                    | 961         | 602      | 68                 | 698          | 698        |            |                                         |
| Volume Left                                                                                                     | 0           | 0        | 68                 | 0            | 0          |            |                                         |
| Volume Right                                                                                                    | 301         | 602      | 0                  | 0            | 0          |            |                                         |
| CSH<br>Volume to Consolts                                                                                       | 1700        | 1700     | 419                | 1700         | 1700       |            |                                         |
| Volume to Capacity Queue Length 95th (ft)                                                                       | 0.57        | 0.35     | 0.16               | 0.41         | 0.41       |            |                                         |
| Control Delay (s)                                                                                               | 0<br>0.0    | 0<br>0.0 | 14<br>15.3         | 0<br>0.0     | 0<br>0.0   |            |                                         |
| Lane LOS                                                                                                        | 0.0         | 0.0      | 15.5<br>C          | 0.0          | 0.0        |            |                                         |
| Approach Delay (s)                                                                                              | 0.0         |          | 0.7                |              |            |            |                                         |
| Approach LOS                                                                                                    |             |          | 0.1                |              |            |            |                                         |
| Intersection Summary                                                                                            |             | AL AS    |                    |              |            |            | BEN FREE TELEVISION OF BEST OF BUSINESS |
| Average Delay<br>Intersection Capacity Utilization<br>Analysis Period (min)                                     | n           |          | 0.3<br>79.7%<br>15 | IC           | U Level o  | f Service  | D                                       |

|                                                    | •          | 4         | †              | <i>&gt;</i>  | 1          | <b>+</b>   |   |
|----------------------------------------------------|------------|-----------|----------------|--------------|------------|------------|---|
| Movement                                           | WBL        | WBR       | NBT            | NBR          | SBL        | SBT        |   |
| Lane Configurations                                | T          | 7         | 个个             | 74           | -02-1-1100 | ब          |   |
| Volume (veh/h)                                     | 144        | 155       | 1851           | 104          | 1          | 0          |   |
| Sign Control                                       | Stop       |           | Free           |              |            | Free       |   |
| Grade                                              | 0%         |           | 0%             |              |            | 0%         |   |
| Peak Hour Factor                                   | 0.92       | 0.92      | 0.92           | 0.92         | 0.92       | 0.92       |   |
| Hourly flow rate (vph) Pedestrians                 | 157        | 168       | 2012           | 113          | 1          | 0          |   |
| Lane Width (ft)                                    |            |           |                |              |            |            |   |
| Walking Speed (ft/s)                               |            |           |                |              |            |            |   |
| Percent Blockage                                   |            |           |                |              |            |            |   |
| Right turn flare (veh)                             |            |           |                |              |            |            |   |
| Median type                                        |            |           | None           |              |            | None       |   |
| Median storage veh)                                |            |           | 110110         |              |            | 110110     |   |
| Upstream signal (ft)                               |            |           |                |              |            |            |   |
| pX, platoon unblocked                              |            |           |                |              |            |            |   |
| vC, conflicting volume                             | 2014       | 1006      |                |              | 2125       |            |   |
| vC1, stage 1 conf vol                              |            |           |                |              |            |            |   |
| vC2, stage 2 conf vol                              |            |           |                |              |            |            |   |
| vCu, unblocked vol                                 | 2014       | 1006      |                |              | 2125       |            |   |
| tC, single (s)                                     | 6.8        | 6.9       |                |              | 4.1        |            |   |
| tC, 2 stage (s)                                    | 2.5        |           |                |              |            |            |   |
| tF (s)<br>p0 queue free %                          | 3,5<br>0   | 3.3<br>30 |                |              | 2.2<br>100 |            |   |
| cM capacity (veh/h)                                | 51         | 239       |                |              | 253        |            |   |
|                                                    |            |           | 110.4          | ND 0         |            |            |   |
| Direction, Lane # Volume Total                     | WB 1       | WB 2      | NB 1<br>1006   | NB 2<br>1006 | NB 3       | SB 1       |   |
| Volume Left                                        | 157        | 0         | 0              | 0            | 0          | 1<br>1     |   |
| Volume Right                                       | 0          | 168       | 0              | 0            | 113        | 0          |   |
| cSH                                                | 51         | 239       | 1700           | 1700         | 1700       | 253        |   |
| Volume to Capacity                                 | 3.08       | 0.70      | 0.59           | 0.59         | 0.07       | 0.00       |   |
| Queue Length 95th (ft)                             | Err        | 117       | 0              | 0            | 0          | 0          |   |
| Control Delay (s)                                  | Err        | 49.4      | 0.0            | 0.0          | 0.0        | 19.3       |   |
| Lane LOS                                           | F          | Ε         |                |              |            | С          |   |
| Approach Delay (s)                                 | 4841.2     |           | 0.0            |              |            | 19.3       |   |
| Approach LOS                                       | F          |           |                |              |            |            |   |
| Intersection Summary                               | - C- C- D- |           | ENGLY R        |              |            |            |   |
| Average Delay<br>Intersection Capacity Utilization | ation      |           | 641.9<br>67.4% | IC           | U Level o  | f Service  | С |
| Analysis Period (min)                              |            |           | 15             | 10           | C 50401 0  | 1 OUI VIUG | Ü |

|                                   | A     | <b>→</b>   | •     | •     | <b>←</b>   | 4          | 4       | <b>↑</b> | ~     | <b>&gt;</b> | ļ     | 1    |
|-----------------------------------|-------|------------|-------|-------|------------|------------|---------|----------|-------|-------------|-------|------|
| Movement                          | EBL   | EBT        | EBR   | WBL   | WBT        | WBR        | NBL     | NBT      | NBR   | SBL         | SBT   | SBR  |
| Lane Configurations               |       | <b>↑</b> ↑ |       | ħ     | <b>个</b> 个 |            | 7       |          | Ja.   |             | र्स   | 74   |
| Volume (vph)                      | 0     | 665        | 81    | 398   | 887        | 0          | 84      | 0        | 754   | 19          | 208   | 193  |
| Ideal Flow (vphpl)                | 1900  | 1900       | 1900  | 1900  | 1900       | 1900       | 1900    | 1900     | 1900  | 1900        | 1900  | 1900 |
| Total Lost time (s)               |       | 4.0        |       | 4.0   | 4.0        |            | 4.0     |          | 4.0   |             | 4.0   | 4.0  |
| Lane Util. Factor                 |       | 0.95       |       | 1.00  | 0.95       |            | 1.00    |          | 1.00  |             | 1.00  | 1.00 |
| Frt                               |       | 0.98       |       | 1.00  | 1.00       |            | 1.00    |          | 0.85  |             | 1.00  | 0.85 |
| Flt Protected                     |       | 1.00       |       | 0.95  | 1.00       |            | 0.95    |          | 1.00  |             | 1.00  | 1.00 |
| Satd. Flow (prot)                 |       | 3482       |       | 1770  | 3539       |            | 1770    |          | 1583  |             | 1855  | 1583 |
| Flt Permitted                     |       | 1.00       |       | 0.95  | 1.00       |            | 0.95    |          | 1.00  |             | 1.00  | 1.00 |
| Satd. Flow (perm)                 |       | 3482       |       | 1770  | 3539       |            | 1770    |          | 1583  |             | 1855  | 1583 |
| Peak-hour factor, PHF             | 0.92  | 0.92       | 0.92  | 0.92  | 0.92       | 0.92       | 0.92    | 0.92     | 0.92  | 0.92        | 0.92  | 0.92 |
| Adj. Flow (vph)                   | 0     | 723        | 88    | 433   | 964        | 0          | 91      | 0        | 820   | 21          | 226   | 210  |
| RTOR Reduction (vph)              | 0     | 8          | 0     | 0     | 0          | 0          | 0       | 0        | 519   | 0           | 0     | 178  |
| Lane Group Flow (vph)             | 0     | 803        | 0     | 433   | 964        | 0          | 91      | 0        | 301   | 0           | 247   | 32   |
| Tum Type                          |       | NA         |       | Prot  | NA         |            | Prot    |          | Perm  | Split       | NA    | Perm |
| Protected Phases                  |       | 4          |       | 3     | 8          |            | 5       |          |       | 6           | 6     |      |
| Permitted Phases                  |       |            |       |       |            |            |         |          | 5     |             |       | 6    |
| Actuated Green, G (s)             |       | 27.1       |       | 29.1  | 60.2       |            | 23.7    |          | 23.7  |             | 17.2  | 17.2 |
| Effective Green, g (s)            |       | 27.1       |       | 29.1  | 60.2       |            | 23.7    |          | 23.7  |             | 17.2  | 17.2 |
| Actuated g/C Ratio                |       | 0.24       |       | 0.26  | 0.53       |            | 0.21    |          | 0.21  |             | 0.15  | 0.15 |
| Clearance Time (s)                |       | 4.0        |       | 4.0   | 4.0        |            | 4.0     |          | 4.0   |             | 4.0   | 4.0  |
| Vehicle Extension (s)             |       | 3.0        |       | 3.0   | 3.0        |            | 3.0     |          | 3.0   |             | 3.0   | 3.0  |
| Lane Grp Cap (vph)                |       | 834        |       | 455   | 1883       |            | 370     |          | 331   |             | 282   | 240  |
| v/s Ratio Prot                    |       | c0.23      |       | c0.24 | 0.27       |            | 0.05    |          |       |             | c0.13 |      |
| v/s Ratio Perm                    |       |            |       |       |            |            |         |          | c0.19 |             |       | 0.02 |
| v/c Ratio                         |       | 0.96       |       | 0.95  | 0.51       |            | 0.25    |          | 0.91  |             | 0.88  | 0.13 |
| Uniform Delay, d1                 |       | 42.5       |       | 41.3  | 17.0       |            | 37.3    |          | 43.7  |             | 46.9  | 41.5 |
| Progression Factor                |       | 1.00       |       | 1.00  | 1.00       |            | 1.00    |          | 1.00  |             | 1.00  | 1.00 |
| Incremental Delay, d2             |       | 22.5       |       | 30.1  | 0.2        |            | 0.3     |          | 28.0  |             | 24.7  | 0.3  |
| Delay (s)                         |       | 65.0       |       | 71.4  | 17.2       |            | 37.6    |          | 71.7  |             | 71.6  | 41.8 |
| Level of Service                  |       | E          |       | Е     | В          |            | D       |          | Ε     |             | E     | D    |
| Approach Delay (s)                |       | 65.0       |       |       | 34.0       |            |         | 68.3     |       |             | 57.9  |      |
| Approach LOS                      |       | E          |       |       | С          |            |         | E        |       |             | Ε     |      |
| Intersection Summary              | 19.20 |            | SIN   |       |            |            | 104     |          |       |             | Heren |      |
| HCM 2000 Control Delay            |       |            | 52.8  | Н     | CM 2000    | Level of S | Service |          | D     |             |       |      |
| HCM 2000 Volume to Capacity       | ratio |            | 0.93  |       |            |            |         |          |       |             |       |      |
| Actuated Cycle Length (s)         |       |            | 113.1 |       | um of lost | , ,        |         |          | 16.0  |             |       |      |
| Intersection Capacity Utilization |       |            | 89.6% | IC    | CU Level   | of Service |         |          | Ε     |             |       |      |
| Analysis Period (min)             |       |            | 15    |       |            |            |         |          |       |             |       |      |
| c Critical Lane Group             |       |            |       |       |            |            |         |          |       |             |       |      |

|                               | 1         | -        | *     | 1    | <b>—</b>    | *          | 1         | <b>↑</b> | P    | 1    | ļ    | 1    |
|-------------------------------|-----------|----------|-------|------|-------------|------------|-----------|----------|------|------|------|------|
| Movement                      | EBL       | EBT      | EBR   | WBL  | WBT         | WBR        | NBL       | NBT      | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations           | 79        | <b>^</b> |       |      | <b>↑</b> ₽  |            | 7         | 4        |      |      |      |      |
| Volume (vph)                  | 550       | 57       | 0     | 0    | 58          | 33         | 1258      | 0        | 25   | 0    | 0    | 0    |
| Ideal Flow (vphpl)            | 1900      | 1900     | 1900  | 1900 | 1900        | 1900       | 1900      | 1900     | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s)           | 4.0       | 4.0      |       |      | 4.0         |            | 4.0       | 4.0      |      |      |      |      |
| Lane Util. Factor             | 1.00      | 1.00     |       |      | 0.95        |            | 0.95      | 0.95     |      |      |      |      |
| Frt                           | 1.00      | 1.00     |       |      | 0.95        |            | 1.00      | 0.99     |      |      |      |      |
| Flt Protected                 | 0.95      | 1.00     |       |      | 1.00        |            | 0.95      | 0.95     |      |      |      |      |
| Satd. Flow (prot)             | 1770      | 1863     |       |      | 3346        |            | 1681      | 1679     |      |      |      |      |
| FIt Permitted                 | 0.69      | 1.00     |       |      | 1.00        |            | 0.95      | 0.95     |      |      |      |      |
| Satd. Flow (perm)             | 1285      | 1863     |       |      | 3346        |            | 1681      | 1679     |      |      |      |      |
| Peak-hour factor, PHF         | 0.92      | 0.92     | 0.92  | 0.92 | 0.92        | 0.92       | 0.92      | 0.92     | 0.92 | 0.92 | 0.92 | 0.92 |
| Adj. Flow (vph)               | 598       | 62       | 0     | 0    | 63          | 36         | 1367      | 0        | 27   | 0    | 0    | 0    |
| RTOR Reduction (vph)          | 0         | 0        | 0     | 0    | 19          | 0          | 0         | 7        | 0    | 0    | 0    | 0    |
| Lane Group Flow (vph)         | 598       | 62       | 0     | 0    | 80          | 0          | 697       | 690      | 0    | 0    | 0    | 0    |
| Tum Type                      | Perm      | NA       |       |      | NA          |            | Perm      | NA       |      |      |      | 7.5  |
| Protected Phases              |           | 4        |       |      | 8           |            |           | 2        |      |      |      |      |
| Permitted Phases              | 4         |          |       |      |             |            | 2         |          |      |      |      |      |
| Actuated Green, G (s)         | 39.0      | 39.0     |       |      | 39.0        |            | 36.7      | 36.7     |      |      |      |      |
| Effective Green, g (s)        | 39.0      | 39.0     |       |      | 39.0        |            | 36.7      | 36.7     |      |      |      |      |
| Actuated g/C Ratio            | 0.47      | 0.47     |       |      | 0.47        |            | 0.44      | 0.44     |      |      |      |      |
| Clearance Time (s)            | 4.0       | 4.0      |       |      | 4.0         |            | 4.0       | 4.0      |      |      |      |      |
| Vehicle Extension (s)         | 3.0       | 3.0      |       |      | 3.0         |            | 3.0       | 3.0      |      |      |      |      |
| Lane Grp Cap (vph)            | 598       | 868      | _     |      | 1559        |            | 737       | 736      |      |      |      |      |
| v/s Ratio Prot                |           | 0.03     |       |      | 0.02        |            |           |          |      |      |      |      |
| v/s Ratio Perm                | c0.47     |          |       |      |             |            | c0.41     | 0.41     |      |      |      |      |
| v/c Ratio                     | 1.00      | 0.07     |       |      | 0.05        |            | 0.95      | 0.94     |      |      |      |      |
| Uniform Delay, d1             | 22.4      | 12.3     |       |      | 12.2        |            | 22.5      | 22.4     |      |      |      |      |
| Progression Factor            | 1.00      | 1.00     |       |      | 1.00        |            | 1.00      | 1.00     |      |      |      |      |
| Incremental Delay, d2         | 36.8      | 0.0      |       |      | 0.0         |            | 20.8      | 19.3     |      |      |      |      |
| Delay (s)                     | 59.2      | 12.4     |       |      | 12.2        |            | 43.3      | 41.7     |      |      |      |      |
| Level of Service              | E         | В        |       |      | В           |            | D         | D        |      |      |      |      |
| Approach Delay (s)            |           | 54.8     |       |      | 12.2        |            |           | 42.5     |      |      | 0.0  |      |
| Approach LOS                  |           | D        |       |      | В           |            |           | D        |      |      | Α    |      |
| ntersection Summary           |           | (NEW)    |       |      | Victorial I |            | No office | 0.4      |      |      |      |      |
| HCM 2000 Control Delay        |           |          | 44.9  | Н    | CM 2000     | Level of S | Service   |          | D    |      |      |      |
| HCM 2000 Volume to Capac      | ity ratio |          | 0.97  |      |             |            |           |          |      |      |      |      |
| Actuated Cycle Length (s)     |           |          | 83.7  | Su   | ım of lost  | time (s)   |           |          | 8.0  |      |      |      |
| ntersection Capacity Utilizat | ion       |          | 79.4% |      | U Level c   |            |           |          | D    |      |      |      |
| Analysis Period (min)         |           |          | 15    |      |             |            |           |          |      |      |      |      |
| Critical Lane Group           |           |          |       |      |             |            |           |          |      |      |      |      |

|                                                                                                           | -                 | •           | 1                  | <b>←</b>                 | 4                 | -                       |   |
|-----------------------------------------------------------------------------------------------------------|-------------------|-------------|--------------------|--------------------------|-------------------|-------------------------|---|
| Movement                                                                                                  | EBT               | EBR         | WBL                | WBT                      | NBL               | NBR                     |   |
| Lane Configurations<br>Volume (veh/h)<br>Sign Control<br>Grade                                            | 607<br>Free<br>0% | 831         | <b>3</b> 1         | ↑↑<br>1285<br>Free<br>0% | 0<br>Stop<br>0%   | 0                       |   |
| Peak Hour Factor Hourly flow rate (vph) Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage | 0.92<br>660       | 0.92<br>903 | 0.92<br>34         | 0.92<br>1397             | 0.92<br>0         | 0.92                    |   |
| Right turn flare (veh)<br>Median type<br>Median storage veh)                                              | None              |             |                    | None                     |                   |                         |   |
| Upstream signal (ft)<br>pX, platoon unblocked                                                             |                   |             |                    | 1319                     |                   |                         |   |
| vC, conflicting volume<br>vC1, stage 1 conf vol<br>vC2, stage 2 conf vol                                  |                   |             | 1563               |                          | 1426              | 660                     |   |
| vCu, unblocked vol<br>tC, single (s)<br>tC, 2 stage (s)                                                   |                   |             | 1563<br>4.1        |                          | 1426<br>6.8       | 660<br>6 <sub>.</sub> 9 |   |
| tF (s)<br>p0 queue free %<br>cM capacity (veh/h)                                                          |                   |             | 2.2<br>92<br>419   |                          | 3.5<br>100<br>116 | 3.3<br>100<br>406       |   |
| Direction, Lane #                                                                                         | EB 1              | EB 2        | WB 1               | WB 2                     | WB3               |                         |   |
| Volume Total<br>Volume Left                                                                               | 961<br>0          | 602<br>0    | 34<br>34           | 698<br>0                 | 698<br>0          |                         |   |
| Volume Right<br>cSH                                                                                       | 301<br>1700       | 602<br>1700 | 0<br>419           | 0<br>1700                | 0<br>1 <b>700</b> |                         |   |
| Volume to Capacity Queue Length 95th (ft)                                                                 | 0.57<br>0         | 0.35<br>0   | 0.08<br>7          | 0.41<br>0                | 0.41<br>0         |                         |   |
| Control Delay (s)<br>Lane LOS                                                                             | 0.0               | 0.0         | 14.3<br>B          | 0.0                      | 0.0               |                         |   |
| Approach Delay (s)<br>Approach LOS                                                                        | 0.0               |             | 0.3                |                          |                   |                         |   |
| Intersection Summary                                                                                      | SEA EN            |             |                    | 1000                     | CARS              | 114                     |   |
| Average Delay<br>Intersection Capacity Utilization<br>Analysis Period (min)                               | 1                 |             | 0.2<br>79.4%<br>15 | IC                       | J L <b>evel</b> o | f Service               | D |



# Waiawa 50 MW Solar Project – Interconnection Feasibility and Impact Assessment

### Project Interconnection Characteristics

The 50 MW Waiawa Solar Project could interconnect to one of two nearby existing 46kV circuits that run adjacent to the H-2 Freeway and just west of the proposed project site. The final Interconnection Requirements Study (IRS) will be provided by Hawaiian Electric as per requisite protocols and requirements of the Public Utilities Commission. The final IRS is due to be accepted by SunEdison and Hawaiian Electric as final by October 15<sup>th</sup>, 2014.

Circuit name: Wahiawa - Waimano 46kV Circuit

Source end: Wahiawa 138kV Substation (Served by the 80MVA Wahiawa 138-46kV Tsf #3)

The circuit conductor size is 336 AL from the Wahiawa 138kV Substation over a roughly 2-1/2 mile section. The conductor size is increased to 556 AL and proceeds for a relatively short segment up to the point of an overhead to underground riser pole located at the northern edge (Wahiawa side) of the Mililani Mauka subdivision. From that point, the circuit proceeds underground using 1500 AL cable for approximately one mile until it risers up, transitioning back to overhead construction. The segment of overhead conductor (a roughly 5,000 feet section of line) is comprised of 556 AL conductor.

Circuit name: Waiau - Wahiawa 46 kV Circuit

Source end: Waiau 138 kV Substation (Served by Waiau 46 kV tied bus)

Circuit Description: The subject circuit serves several distribution substations starting from the source end fed from the Waiau 46 kV bus at Hawaiian Electric's (HECO's) Waiau Power Plant in Pearl City, Oahu, extending to and serving the residential and commercial customers in Mililani and Kunia. It is a relatively lightly loaded circuit during normal operations. The entire 46 kV circuit is overhead construction.

# Waiawa Interconnection Study

An interconnection study for the 50 MW Waiawa Solar Project commenced under an Interconnection Requirements Study Letter Agreement executed by SunEdison, LLC and HECO on October 3, 2013. All models of the inverter and photovoltaic system as well as single line diagrams and other requested materials were provided by SunEdison in a timely manner in order to commence the study along with all other utility scale 'low-cost waiver solicitation' projects. Initial feedback from HECO was that the 50 MW Project interconnection is feasible, and would require re-conductoring of 2-4 miles of 46kV lines on the Wahiawa – Waimano 46kV Circuit. Current advice and documentation now indicates HECO's intention to connect the project via 2 X 25MW interconnections to 2 circuits which no longer requires this re-conductoring line work.

March 4, 2014, HECO indicated it wished to increase its understanding of curtailment impacts of the low-cost waiver projects. HECO initiated an assessment of how Distributed Generation fits in with existing System

Base Cases. The HECO analysis is anticipated to be completed after HECO submits its Power Supply Improvement Plan for Oahu to the Public Utilities Commission in August.

The IRS study draft is due to be received by August 19, 2014 and be finalized by October 15, 2014.

### **Impacts on Residential and Commercial Interconnections**

The 50MW Waiawa Solar project will connect to the HECO grid at 46kV where power will flow to two 46-138kV substations and step-up to 138kV via transformers, the same sub-transmission level that some HECO fossil generation is produced at. In contrast, commercial and residential systems are connecting to the grid at 12kV. It is at the 12kV that HECO evaluates limitations on interconnections. Essentially, HECO's evaluations and limitations are based on constraints of individual 12kV feeders (essentially by neighborhood). In HECO's current evaluation process, interconnections at the utility scale/sub transmission level (46 kV) will not impact assessments of individual 12 kV solar photovoltaic interconnections. Residential and commercial project interconnections require a full IRS study when limitations on the 12kV feeders have been reached related to penetration (greater than 15%) or minimum daytime load thresholds (which are being revisited but which have recently been 125% of minimum daytime loading), both of which are not influenced by generation of solar at the 46kV sub-transmission level.

HECO is currently studying the larger impacts of the amount of penetration of solar and other intermittent energy sources (wind, etc.) as a whole on the Oahu grid as part of a Power Supply Improvement Plan which was submitted to the Public Utilities Commission in late August. We trust that the Hawaii PUC will make the right decisions in balancing the energy generation portfolio of the island for the maximum benefit of the ratepayer.

### **Interconnection Project Engineer**

Patrick Tan, P.E. Interconnection Planning Engineer San Francisco, CA Phone: (650) 276-6976

Email: ptan@sunedison.com

# Waiawa Solar Farm Project Preliminary Civil Considerations

Waiawa, 'Ewa, O'ahu Tax Map Key Numbers: (1) 9-4-006: 034 (por.), 035 (por.), 036, 037 (por.); (1) 9-6-004: 024 (por.), 025, 026; (1) 9-6-005: 001 (por.)

2014 DCT 10 P 3: 42

LICENSED P
PROFESSIONAL
ENGINEER
No. 10901-C

THIS WORK WAS PREPARED BY ME OR UNDER MY SUPERVISION

SIGNATURE EXPIRATION DATE: 04/30/2016

Prepared for



# SunEdison

North America Project Development 240 Makee Road, Unit 8D Honolulu, HI 96815



**Group 70 International, Inc.** 925 Bethel Street, 5<sup>th</sup> Floor

Honolulu, HI 96813 Phone: (808) 523-5866 Fax: (808) 523-5874 www.group70int.com

October 6, 2014



# SunEdison Waiawa Solar Farm Project - Preliminary Civil Considerations

# **Project Description**

The proposed Waiawa Solar Farm Project is located on Kamehameha Schools (KS) property on former agricultural lands in Waiawa, Ewa, Oahu. The solar farm project will be developed in two phases. Phase I is planned to generate approximately 50 MW of power and will be constructed within approximately 300 acre easement area. Phase II is planned to generate approximately 65 MW of power and will constructed within approximately 268 acre easement area. The actual areas of the solar farm will vary depending on existing topography and system design and layout.

Photovoltaic modules (PV Panels) will be mounted on steel racks which are anchored to the ground on piers. The racks will be fixed to the piers and tilted in the southerly direction. Groups of racks will be arranged and combined to deliver power to inverters which will be mounted on concrete pads. These inverters will deliver the power to a dedicated project substation and battery storage system located near the point of interconnection to HECO's existing 46kv transmission line on the west side of the project site in phase I.

Infrastructure improvements required for the solar farm include: substation, battery storage system, PV panels, pad mounted inverters and electrical equipment, access driveways, perimeter fencing, security systems, and drainage and vegetation improvements.

# Access

Access to the project site is primarily from the Waiawa Prison Road along the northern edge of the KS property, which connects to the H-2 freeway via Mililani Memorial Cemetery Road and Ka Uka Boulevard. Secondary access to the property is off of Waihona Street, mauka of Kamehameha Highway, in the Pearl City Industrial Park. There are numerous unpaved roads throughout the KS property.

The project area was historically used for sugar cane cultivation, but has remained fallow since 1983. As a result, the former sugar cane fields are overgrown with dense vegetation. The internal access roads have been maintained and cleared by KS to the extent possible to allow vehicular access throughout the property.

# **Grading and Drainage**

In general, the solar farm will be located on the ridgelines where the former tilled sugar cane fields were located. Phase I project area generally slopes mauka to makai down from elevations of 660 feet to 395 feet. Phase II generally slopes mauka to makai from elevation of 520 feet to 240 feet based on available topographic information. Optimal placement of the PV panels will be on the flatter more gradually sloped areas on the ridgelines and away from the steep ravines that lead to the valleys below.

Clearing, grubbing and grading will be needed on the project site for placement of the solar panels, equipment, facilities, access driveways, fence and vegetated buffer. In general, the steeper areas of the project site will be avoided and PV racks will be concentrated in areas of more gradual slopes. The initial rough estimates of potential earthwork volumes for Phase 1 contemplated roughly 400,000 cubic yards of balanced cut/fill across the site in order to install the

fixed tilt racking system of the modules on relatively flat terrain. It is anticipated that the earthwork volumes and related construction costs will be minimized by optimal placement of the PV racks by following the existing grades and elevations. Where possible, the existing agricultural roads will continue to be utilized for access.

Permits and approvals will be required from the State of Hawaii and the City and County of Honolulu (C&C) to allow grading and grubbing of the site including:

- State of Hawaii Department of Health (DOH) NPDES General Permit for Construction Activities, Notice of Intent (NOI-C)
- City and County of Honolulu Grading, Grubbing and Stockpiling Permit

The applications for both State and C&C grading and erosion control permits identified above require agency review and approval of Grading and Erosion Control Construction Plans including related Storm Water Pollution Prevention Plans, Erosion Control Calculations, and Drainage Reports.

# **Stormwater Quantity Management**

Since the solar farm is generally located on the ridgelines, the project area is generally not subject to runoff from offsite areas mauka of the site. Existing runoff currently discharges through sheet flow or shallow concentrated flow into swales onto adjacent downstream areas. The existing drainage patterns will not be altered in this project with earthwork limited to leveling for access driveways, equipment pads, and the substation.

Addition of impervious area from concrete equipment pads, equipment buildings and micropile/pier foundations will be minimal. Due to the even distribution of impervious area throughout the project site, slight leveling of driveway areas, and use of raised gravel driveways, the increase in impervious area is not anticipated to increase runoff rates. As a result, there will not be a significant pre-development to post-development increase in stormwater flows due to the construction of the project.

Onsite stormwater will be properly directed away from equipment pads and any other structures to minimize erosion. Drainage channels with velocity reduction controls will be constructed in which water will flow to stormwater basin(s) and/or other volume control facilities. The volume control facilities will be situated at the proper downstream locations, and will discharge out with non-erosive velocities back into the natural drainage features.

Offsite flows, to the extent there are any, will be diverted around the site or through the site so as to not impact the existing drainage paths as well as the proposed construction. If required, diversion channels will be constructed with check dams, drop structures or other velocity reducing controls and flow back into the natural drainage features.

# **Stormwater Quality Management**

Both temporary and permanent Best Management Practices (BMPs) are required to be implemented for the project through the grading and erosion control regulations and permits required by the State and C&C agencies. Temporary BMPs are required during construction activities and will remain in place until Permanent BMPs can be established. Temporary erosion

control measures will be incorporated during the construction period to minimize soil loss and erosion hazards. It is anticipated that the erosion control BMPs to be used on-site will include the following:

- Preservation of natural vegetation
- Minimize area of clearing and grubbing
- Vegetated buffers
- Temporary soil stabilization with grass and/or mulch
- Silt fences/fiber filtration tubes
- Gravel bag berms/check dams
- Stabilized construction entrances
- Sediment traps and basins
- Temporary diversion swales and ditches
- Dust control water application and/or dust screens

Due to the size of the project, the above temporary BMPs will be implemented in a phased manner through grading increments as required by the regulatory agencies. Details on the grading increments and related BMPs will be shown on the Grading and Erosion Control Plans.

Permanent erosion control BMPs will also incorporated into the design and are required to close out grading and erosion control permits. Typically permanent BMPs primarily include final stabilization of exposed soils through landscaping or installation of impervious surfaces including pavement and buildings. Additional BMPs are also typically required to provide treatment of stormwater runoff to remove pollutants. For solar farm projects, the total additional impervious surface is minimal and the PV panels are not pollution generating surfaces. However, C&C regulations include minimum thresholds for requirements related to installation of BMPs for stormwater quality based on total disturbed area regardless of the added impervious area or pollutant generation from a project.

C&C Civil Engineering Branch (CEB) is responsible for interpreting and approving BMP and drainage system designs. For solar farms, CEB has been defining the project's disturbed area as all of the area within the project fence line, regardless of actual ground disturbance. This determination results in the solar farm project being classified as a "Priority A1" project that triggers the following low impact development (LID) requirements:

- Unless infeasibility criteria, as defined in §1-5.2 of the Water Quality Design Standards, can be met for each type of LID feature, Water Quality Volume (WQV) must be calculated using the 1" design storm runoff depth and retained on-site through use of permanent BMPs that utilize infiltration or evapotranspiration.
  - o Consultation with CEB resulted in a City determination that the WQV must account for stormwater runoff from the total area within the project fence line.
- If infeasibility criteria are met, any portion of the WQV that is not retained must be biofiltered using permanent erosion control BMPs.

In summary, the project will likely be required to provide onsite treatment of 1" of runoff over the entire disturbed area. BMP requirements and applicable drainage criteria and standards will be

confirmed with the C&C during design. It is anticipated that permanent BMPs to be utilized on the project include the following:

- Permanent soil stabilization with landscaping, pavement, or gravel
- Infiltration trenches
- Dry wells and sumps
- Grass swales and ditches
- Filter strips
- Sediment traps and basins

### **PV Panel Maintenance**

During operations, the site would be largely unoccupied, other than security staff. Panel cleaning will typically occur a couple of times per year depending on rainfall. It is anticipated that the panels will be cleaned with water delivered by truck to the site unless a closer source of water is identified. Cleaning solutions and other chemicals will not be used to clean the panels.

# **Noise Impacts**

The solar farm is a relatively passive operation. The racking systems are fixed and do not have any motors or moving parts. The electrical equipment does not include any mechanical or motorized equipment that will generate noise. There will be some minimal corona noise coming from the electrical equipment. Operation and maintenance activities may result in minimal vehicular noise from security and maintenance staff. It is not anticipated that operations at the site would generate noise that exceeds acceptable noise levels.

During construction, noise levels are likely to increase as a result of earth moving equipment, installation of solar panels, construction vehicles and other construction activities. Noise generated from construction activities will comply with the regulations for community noise control in the Hawaii Administrative Rules (HAR) Chapter 11-46. Due to the remote location of the project and distance from communities it is anticipated that any impacts would be minimal. If necessary, noise permits will be obtained through DOH.

### Air Quality

There are no direct air emissions from operating the solar farm. Operation and maintenance activities may result in small amounts of fugitive dust or tailpipe emissions from vehicular traffic and landscape maintenance. However, it is not anticipated that the operations at the site would adversely affect air quality.

During construction, there will be short-term impacts in the form of exhaust from increased traffic and fugitive dust generated by the construction activity. Temporary BMPs will be used to mitigate impact from fugitive dust during construction. These BMPs may include dust fences, windbreaks, watering of disturbed areas and other soil management measures. BMPs will be identified and included on the erosion control plans that are required for both C&C and State grading and erosion control permit approvals. Construction activities at the site will comply with the regulations for fugitive dust control in HAR, Section 11-60.1.

# **Groundwater Impacts**

The solar farm PV panels are not pollution generating surfaces. The racks will be fixed and do not have any motors or moving parts. Although Phase 2 of the project is located over the US Navy Waiawa Shaft Zone of Contribution, it is not anticipated that the project would have an impact since it does not generate pollutants which would be discharged to groundwater.

# **Considerations for Development**

Kamehameha Schools ("KS") has kuleana of over 300,000 acres of land in the islands that was bequeathed to KS by Bernice Pauahi Bishop for the purpose of serving children of Hawaiian ancestry. The Waiawa lands, which are a part of this legacy, present a tremendous opportunity for honoring her legacy, and the legacy of other ali'i who graced these lands, by choosing and utilizing sustainable methods of land management grounded in a Hawaiian worldview.

The original master plan and the development program created by Gentry for the Waiawa property were made in the 1980s. The Gentry plan appropriately envisioned utilizing the Waiawa property for urban uses (e.g. a variety of residential uses, commercial, industrial and golf course uses). Even at that time it was recognized that the Waiawa property was within the desired path of future urban development on Oahu. In 2002, through the Central Oahu Sustainable Communities Plan, the City and County of Honolulu designated the Waiawa property for urban type uses.

While the Gentry development plan is generally consistent with the intensity of development recognized as appropriate for the Waiawa property and environs, at this point in time the plan is somewhat out of date, and does not recognize the most recent developments in land use planning and environmental considerations. Furthermore, the areas surrounding the Waiawa property have changed, and significant changes are planned in the near future. As a result, the Gentry plan needs to be re-assessed to take into consideration todays' regional and social changes, versus those of 25+ years ago. The jobs and revenues projected to result from the Gentry plan are likely not realistic in the current environment. However, rather than letting the land remain vacant and unproductive, KS has sought out opportunities to make good use of the property in a manner that benefits the State as a whole.

As an institution KS has evolved since the 1980s, and KS has an obligation to evaluate uses of the Waiawa property in a way that is consistent with its mission and obligations to beneficiaries. KS must continually seek ways of securing a financial return from its assets, such as the Waiawa property, while ensuring that the methods to obtain those returns are consistent with the KS values and mission. During this interim period of 30 - 35 years, while SunEdision is utilizing large portions of the Waiawa property, KS will be able to realize some level of financial return on the property, while creating an opportunity for Oahu electricity users to experience a significant reduction in utility costs. An additional benefit to utilizing portions of the Waiawa property as a solar farm is that solar farms uses are not incompatible with other urban-type development. The SunEdision solar farm, projected to use less than 600 acres of the Waiawa property, will not preclude KS from pursuing other development options on the remainder of the Waiawa property.

### I. THE KAMEHAMEHA SCHOOLS' PROCESS

### a. STRATEGIC PLANNING

Kamehameha Schools is a perpetual charitable trust for the education of the youth of Hawaii, and whose primary mission is to educate Native Hawaiian children. As a perpetual charitable trust, KS

Page 1

must be particularly cautious about taking any actions that may reduce its limited trust assets. In order to fulfill its educational mission, KS must engage in a strategic planning process that addresses both its plan for education and its investment plan. Strategic plans are prepared in order to chart KS' course for the future. As such, strategic plans must necessarily be updated on a regular basis in order for KS to assess how it is performing in achieving its goals and fulfilling its mission.

The current plan, Kamehameha Schools Strategic Plan 2000 - 2015, is coming to a close. Therefore, KS has recently embarked on an organizational wide Strategic Planning Processes for the 2015-2040 time horizon. As part of this Strategic Plan update process, we have already orchestrated over 100 internal and external input-gathering sessions statewide. Similar to the 2000 - 2015 Strategic Plan, the 2015 - 2040 Strategic Plan will set the overall goals for KS with respect to its educational mission, identify issues, formulate strategies for addressing those issues, and result in goals and priorities to be pursued by KS in the near future. Future uses of the Waiawa property will have to be evaluated against the goals and priorities to be set forth in the 2015 - 2040 Strategic Plan.

### **b. PLANNING AND EDUCATION**

The importance of the upcoming 2015 - 2040 Strategic Plan to the Waiawa Project is that the Waiawa lands will be included in a regional planning effort where learning opportunities in conjunction with commercial development will be considered. The concept of direct collaboration of education with commercial development may present exciting new opportunities for KS. This concept must be explored in order to determine possible implementation strategies and feasibility.

For example, KS would like to explore the feasibility of incorporating learning opportunities on the Waiawa lands including:

- Land stewardship opportunities (aina based learning)
- Potential collaborations with Leeward Community College

Incorporating such educational opportunities necessarily means identifying appropriate development options for the Waiawa property. This will take time and creativity, but KS has already begun to take action on this front.

The agreement between KS and SunEdision, which allows SunEdision to develop a solar farm on portions of the Waiawa property, requires SunEdision to cooperate with KS in supporting educational programs during the term of the solar farm project. SunEdision has offered school programs to middle school and high school students elsewhere, to help students understand renewable energy technology in a hands-on way, so that students can understand how solar energy works within the overall power supply systems.

### c. STAKEHOLDERS

Development of the Waiawa property also needs to include the interests of the State, community, KS Beneficiaries, and economic considerations. KS embraces an extensive community consultation

process and works to better align land management decisions consistent with the overall KS Strategic Plan and needs of the community as illustrated by our North Shore, Kapalama, and Kakaako Plans.

One of the challenges with the Gentry plan is that it assumed that half of the housing would be limited to "retirement/leisure housing" available to people aged 55 and over. This type of development is likely no longer practical or desirable. However, that assumption can be confirmed (or refuted) though meetings with stakeholders in the community.

Another matter to be assessed with stakeholders is the impact of rail. Today Honolulu has a rail system that was not envisioned by the Gentry plan. This new mass transit system under construction falls within a quarter mile of the southern portion of the Waiawa property. The proximity of the rail line and the planned stations for Pearl Highlands and Leeward Community College provide an opportunity to reexamine how the southern portion of the Waiawa property could be developed to embrace Transit Oriented Development (TOD). Initial discussions with City officials have resulted in optimism regarding potential TOD opportunities and potential private/public collaborations. However, the Gentry Plan assumes a northerly approach to the property, crossing Ka Uka Boulevard. This northerly approach was planned at a time when rail was not on the horizon. This approach requires expensive infrastructure, and may not make sense in light of the pending rail system. Due to the pending TOD, a more southern approach needs to be evaluated.

There are several potential TOD and collaborative opportunities that could emerge, including:

- The creation of a more sustainable community with direct access to alternative modes of transportation (i.e., rail)
- An opportunity to collaborate with the City to potentially develop affordable and work force housing near the proposed rail station
- An opportunity to collaborate with the City for potential park-and-ride destinations on the southern portion of the property.

However, one of the challenges with this approach is that existing State and County land use designations will need to be evaluated, as some of the southern portion of the Waiawa property falls outside of the State Land Use Urban District. Additional governmental approvals will be necessary to enable full development of the southern portion of the property which will require further studies, planning, and time.

With the significant changes to socio—economic conditions, traffic infrastructure, and environmental changes over the past 25+ years, the Gentry Plan needs to be re-examined. KS is committed to reevaluating the Gentry plan in the context of the current and near-future development environment surrounding the Waiawa property.

### d. PLANNING PROCESS

As a first step, KS will complete its 2015 - 2040 Strategic Plan, which necessarily involves engagement with KS stakeholders. Once the new Strategic Plan is in place, KS will be in a position where it can assess the Waiawa property against its established goals and priorities.

As a second step, KS will work within the context of the Strategic Plan and work with community members, educators, beneficiaries on a regional basis to define specific goals and objectives for the Leeward Area Region. This is a large scale planning effort that is necessary to help guide the best decisions for the development of the land. It is estimated that a plan will be defined by 2017.

Upon completion of the regional plan, master planning of the Waiawa lands can commence. The master planning process would involve a community consultation process to align land management decisions with market conditions and the regional plans.

Additional studies to assess infrastructure, traffic, cultural implications, and a host of other planning studies will be required to evaluate the feasibility of desired scenarios. As mentioned above, additional/revised land use approvals may also be required, depending upon the master plan scenarios.

Once specific plans for the Waiawa property are finalized and approved by our Trustees, they can be presented to the Land Use Commission for review. KS acknowledges that with any future development proposals for the Waiawa property, the Commission will have the authority to impose new conditions of approval on the Waiawa property if the Commission deems such conditions necessary to uphold the intent and spirit of Chapter 205.



# TCP Hawai'i, LLC

Documenting Traditional Cultural Properties of Hawai'i Preserving and Restoring Cultural and Natural Resources of Hawai'i

September 16, 2014

To: SHPD-Archaeology Branch

Re: Submittal of Archaeological Inventory Survey of 1,395 Acres of Kamehameha Schools' Land in

Waiawa and Waipi'o Ahupua'a, 'Ewa District, O'ahu Island, Hawai'i

TMK (1) 9-4-006:034 por., 035 por., 036, 037 por.; 9-6-004:024 por., 025, 026; 9-6-005:001 por.

Aloha SHPD-Archaeology Branch,

TCP Hawai'i is submitting this Archaeological Inventory Survey (AIS) report of an approximately 1,395-acre project area of Kamehameha Schools' land in Waiawa and Waipi'o Ahupua'a, 'Ewa District, O'ahu, for your review and comment. The project proponent is Kamehameha Schools (567 South King Street, Suite 200, Honolulu, HI 96813). The project representative is Jason Jeremiah, Senior Cultural Resource Manager (541-5376, jajeremi@ksbe.edu). The AIS was conducted in accordance with the general requirements of HRS Chapter 6E-42 and HAR Chapter 13-284; and the specific details in HAR Chapter 13-276.

In addition to the SHPD submittal form and a check for \$450, we have included one hardcopy and one CD-ROM of the draft report.

We are requesting your concurrence on the identification of historic properties, significance evaluation and proposed mitigation measures; or, any proposed revisions or changes you would like to see incorporated into the final report.

Please feel free to contact me if you have any questions about this request for consultation.

With aloha.

Christopher M. Monahan, Ph.D.

Principal Investigator, Archaeologist

TCP Hawai'i, LLC 333 Aoloa Street, #303

Kailua, HI 96734

(808) 754-0304

mookahan@gmail.com