APPENDIX A

Wastewater Demand / Flow Calculations

MAUI RESEARCH AND TECHNOLOGY PARK MASTER PLAN WASTEWATER FLOW PROJECTIONS

TOTAL PROJECT

- 1. Average Wastewater Flow:
 - = 0.50 MGD (Obtained from Wastewater Flow Tabulation)
- 2. Maximum Wastewater Flow:
 - = 0.50 MGD x 3.60 (Babbitt Peaking Factor)
 - = 1.80 MGD
- 3. Dry Weather Infiltration/Inflow:
 - =5 gpcd x 10,354 (Obtained from Per Capita Tabulation)
 - =0.05 MGD
- 4. Design Average Flow:
 - =0.50 MGD + 0.05 MGD
 - =0.55 MGD
- 5. Design Maximum Flow:
 - = 1.80 MGD + 0.05 MGD
 - = 1.85 MGD
- 6. Wet Weather Infiltration/Inflow:
 - = 1,250 gpad x 364 acres
 - = 0.46 MGD
- 7. Design Peak Flow:
 - =1.85 MGD + 0.46 MGD
 - = 2.31 MGD

PHASE 1

- 1. Average Wastewater Flow:
 - = 0.26 MGD (Obtained from Table A-1: Wastewater Flow Tabulation)
- 2. Maximum Wastewater Flow:
 - = 0.26 MGD x 4.2 (Babbitt Peaking Factor)
 - = 1.09 MGD
- 3. Dry Weather Infiltration/Inflow:
 - =5 gpcd x 5,548 (Obtained from Table A-2: Per Capita Tabulation)
 - =0.03 MGD

- 4. Design Average Flow:
 - =0.26 MGD + 0.03 MGD
 - =0.29 MGD
- 5. Design Maximum Flow:
 - = 1.09 MGD + 0.03 MGD
 - = 1.12 MGD
- 6. Wet Weather Infiltration/Inflow:
 - = 1,250 gpad x 212 acres
 - = 0.26 MGD
- 7. Design Peak Flow:
 - =1.12 MGD + 0.26 MGD
 - = 1.38 MGD

PHASE 2

- 1. Average Wastewater Flow:
 - = 0.24 MGD (Obtained from Table A-1: Wastewater Flow Tabulation)
- 2. Maximum Wastewater Flow:
 - = 0.24 MGD x 4.3 (Babbitt Peaking Factor)
 - = 1.03 MGD
- 3. Dry Weather Infiltration/Inflow:
 - =5 gpcd x 4,806 (Obtained from Table A-2: Per Capita Tabulation)
 - =0.02 MGD
- 4. Design Average Flow:
 - =0.24 MGD + 0.02 MGD
 - =0.26 MGD
- 5. Design Maximum Flow:
 - = 1.03 MGD + 0.02 MGD
 - = 1.05 MGD
- 6. Wet Weather Infiltration/Inflow:
 - = 1,250 gpad x 152 acres
 - = 0.19 MGD
- 7. Design Peak Flow:
 - =1.05 MGD + 0.19 MGD
 - = 1.24 MGD

	Parcel Area (Acres)	Unit Area (Sq. Ft.)	Dwelling Units	Employees	Contribution (gal/unit/day)	Avg. Daily Flow (gpd)	Comments
A. EMPLOYMENT CORE							
1 to 5 Existing Buildings				400	20	8,000	
6 Future USPS Sorting Facility	y 2.2			100	20	2,000	
7 Employment	2.9			130	20	2,600	
8 Employment	2.7			120	20	1,340	
9 Employment	2.3			100	20	1,660	
10 Employment	5.0			200	20	1,040	
11 Employment	1.2			50	20	1,000	
12 Employment	1.2			50	20	1,000	
13 Employment	1.4			60	20	1,200	
14 Employment	1.4			60	20	1,200	
15 Employment	2.8			120	20	2,400	
16 Employment	2.3			100	20	2,000	
17 Employment	2.3			100	20	2,000	
18 Employment	2.3			100	20	2,000	
19 Employment	0.9			40	20	800	
20 Employment	1.2			50	20	1,000	
21 Employment	1.0			50	20	1,000	
22 Employment	1.0			50	20	1,000	
23 Employment	1.6			70	20	1,400	
24 Employment	1.5			60	20	1,200	
25a Employment	2.0			90	20	1,800	
25b Employment	1.9			80	20	1,600	
26 Employment	6.8			270	20	5,400	
					Subtotal:	44,640	

		Parcel Area (Acres)	Unit Area (Sq. Ft.)	Dwelling Units	Employees	Contribution (gal/unit/day)	Avg. Daily Flow (gpd)	Comments
	WLEDGE INDUSTRY ANSION/CAMPUS							
1A	Employment	4.4			190	20	3,800	
1B	Employment	0.9			40	20	800	
2	Employment	2.3			100	20	2,000	
3	Employment/Campus	9.9			370	20	7,400	
3b	Employment/Campus-Reserve	11.4						No Development
4	Employment	3.8			170	20	3,400	
5	Mixed Use/Flex	0.9			40	30	1,200	
6	Mixed Use/Flex	1.3			50	30	1,500	
7	Employment	4.0			170	20	3,400	
8	Employment	4.2			180	30	5,400	
9	Employment/Campus	11.4			430	20	8,600	
						Subtotal:	37,500	
C. VILL	AGE CENTER							
1	Hotel	22.1	60,000	150		300	45,000	Assume 150 rooms
2	Mixed Use	3.1	·		80	30	2,400	
3	Mixed Use	2.5			50	30	1,500	
4	Mixed Use	2.5			50	30	1,500	
5	Residential	2.6		80		255	20,400	
6	Restaurant	0.8	8,000		100	80	4,160	Assume 100 seats
7	Residential	1.4	•	23		350	8,050	
8	Residential	2.4		42		350	14,700	
9	Residential	2.1		10		350	3,500	
10	Residential	0.9		10		350	3,500	
11	Residential	1.0		9		350	3,150	
12	Residential	0.9		7		350	2,450	
13	Residential	0.7		4		350	1,400	
14	Residential	0.9		7		350	2,450	

	Parcel Area (Acres)	Unit Area (Sq. Ft.)	Dwelling Units	Employees	Contribution (gal/unit/day)	Avg. Daily Flow (gpd)	Comments
15 Residential	0.1		1		350	350	
17 Civic	3.9						Open Space
18 Civic	6.2	100,000		500	15	7,500	
					Subtotal:	122,010	
D. MAKAI RESIDENTIAL							
1 Residential	3.1		52		255	13,260	
2 Residential	3.9		64		255	16,320	
3 Residential	3.2		53		255	13,515	
4 Residential	1.9		31		255	7,905	
5 Residential	2.5		42		255	10,710	
6 Residential	3.0		50		255	12,750	
7 Residential	3.5		58		255	14,790	
E. RESIDENTIAL AND KNOWLEDGE INDUSTRY EXPANSION					Subtotal:	89,250	
1 Residential	1.3		18		350	6,300	
2 Residential	2.1		30		350	10,500	
3 Residential	1.4		19		350	6,650	
4 Residential	1.7		24		350	8,400	
5 Residential	1.7		23		350	8,050	
6 Residential	1.8		25		350	8,750	
7 Residential	1.5		20		350	7,000	
9 Residential	1.1		15		350	5,250	
10 Residential	2.9		41		350	14,350	
11 Residential	1.9		27		350	9,450	
12 Residential	3.4		47		350	16,450	
14 Residential	2.5		35		350	12,250	

		Parcel Area	Unit Area	Dwelling		Contribution	Avg. Daily	
		(Acres)	(Sq. Ft.)	Units	Employees	(gal/unit/day)	Flow (gpd)	Comments
15	Residential	1.9		27		350	9,450	
17	Residential	1.7		24		350	8,400	
18	Residential	2.5		34		350	11,900	
19	Residential	1.6		23		350	8,050	
20	Residential	1.8		25		350	8,750	
21	Residential	1.7		22		350	7,700	
22	Employment	4.1			180	30	5,400	
22b	Employment - Reserve		No Development					
23	Employment	4.6			200	30	6,000	
23b	Employment - Reserve							No Development
24	Employment	6.0			260	30	7,800	
24b	Employment - Reserve							No Development
25	Employment	11.8			510	30	15,300	
						Subtotal:	202,150	
		495,550						
	·							
		pd) for Phase 1:	255,900					
		239,650						

NOTES:

- 1. PHASE 1 INCLUDES A-EMPLOYMENT CORE, C-VILLAGE CENTER, AND D-MAKAI RESIDENTIAL
- 2. PHASE 2 INCLUDES B-KNOWLEDGE INDUSTRY EXPANSION/CAMPUS AND E-OPTION LAND

TABLE A-2 MAUI RESEARCH AND TECHNOLOGY PARK MASTER PLAN TOTAL PER CAPITA TABULATION

		Parcel Area (Acres)	Unit Area (Sq. Ft.)	Dwelling Units	Employees
A. E	MPLOYMENT CORE	,			, ,
	to 5 Existing Buildings				400
6	Future USPS Sorting Facility	2.2			100
7	Employment	2.9			130
8	Employment	2.7			120
9	Employment	2.3			100
1(· ·	5.0			200
1		1.2			50
12	2 Employment	1.2			50
13	3 Employment	1.4			60
14		1.4			60
15	5 Employment	2.8			120
16	6 Employment	2.3			100
17	7 Employment	2.3			100
18	B Employment	2.3			100
19	9 Employment	0.9			40
20) Employment	1.2			50
2	1 Employment	1.0			50
22	2 Employment	1.0			50
23	3 Employment	1.6			70
24	4 Employment	1.5			60
2	5a Employment	2.0			90
2	5b Employment	1.9			80
26	6 Employment	6.8			270
	NOWLEDGE INDUSTRY XPANSION/CAMPUS			Subtotal:	2,450
1/	A Employment	4.4			190
18	B Employment	0.9		_	40
2	Employment	2.3			100
3	Employment/Campus	9.9		_	370
31	B Employment - Reserve	11.4			0
4	Employment	3.8			170
5	Mixed Use/Flex	0.9			40
6	Mixed Use/Flex	1.3			50
7	Employment	4.0			170
8	Employment	4.2			180
7	Employment/Campus	11.4			430
				Subtotal:	1,740

TABLE A-2 MAUI RESEARCH AND TECHNOLOGY PARK MASTER PLAN TOTAL PER CAPITA TABULATION

	Parcel Area (Acres)	Unit Area (Sq. Ft.)	Dwelling Units	Employees
C. VILLAGE CENTER				
1 Hotel	2.1	60,000	150	150
2 Mixed Use	3.1		80	80
3 Mixed Use	2.5		65	50
4 Mixed Use	2.5		63	50
5 Residential	2.6		80	320
6 Restaurant	0.8	8,000		100
7 Residential	1.4		23	92
8 Residential	2.4		42	168
9 Residential	2.1		10	40
10 Residential	0.9		10	40
11 Residential	1.0		9	36
12 Residential	0.9		7	28
13 Residential	0.7		4	16
14 Residential	0.9		7	28
15 Residential	0.1			
17 Civic	3.9			
18 Civic	6.2	100,000		500
D. MAKAI RESIDENTIAL			Subtotal:	1,698
1 Residential	3.1		52	208
2 Residential	3.9		64	256
3 Residential	3.2		53	212
4 Residential	1.9		31	124
5 Residential	2.5		42	168
6 Residential	3.0		50	200
7 Residential	3.5		58	232
			Subtotal:	1,400

TABLE A-2 MAUI RESEARCH AND TECHNOLOGY PARK MASTER PLAN TOTAL PER CAPITA TABULATION

		Parcel Area (Acres)	Unit Area (Sq. Ft.)	Dwelling Units	Employees			
	DENTIAL AND KNOWLEDGE ISTRY EXPANSION							
1	Residential	1.3		18	72			
2	Residential	2.1		30	120			
3	Residential	1.4		19	76			
4	Residential	1.7		24	96			
5	Residential	1.7		23	92			
6	Residential	1.8		25	100			
7	Residential	1.5		20	80			
9	Residential	1.1		15	60			
10	Residential	2.9		41	164			
11	Residential	1.9		27	108			
12	Residential	3.4		47	188			
14	Residential	2.5		35	140			
15	Residential	1.9		27	108			
17	Residential	1.7		24	96			
18	Residential	2.5		34	136			
19	Residential	1.6		23	92			
20	Residential	1.8		25	100			
21	Residential	1.7		22	88			
22	Employment	4.1			180			
22b	Employment -Reserve	2.2			0			
23	Employment	4.6			200			
23b	Employment - Reserve	2.5			0			
24	Employment	6.0			260			
24b	Employment - Reserve	3.3			0			
27	Employment	11.8			510			
Subtotal:								
Total Per Capita:								
		Tot	tal Per Capita	for Phase I:	5,548			
			al Per Capita		4,806			

NOTES:

- 1. PHASE 1 INCLUDES A-EMPLOYMENT CORE, C-VILLAGE CENTER, AND D-MAKAI RESIDENTIAL
- 2. PHASE 2 INCLUDES B-KNOWLEDGE INDUSTRY EXPANSION/CAMPUS AND E-OPTION LAND

APPENDIX B

Water Demand Calculations

APPENDIX B-1

Honolulu Board of Water Supply Dual System Water Use Criteria

 $\label{eq:Table 2} \mbox{Summary of Water System Design Criteria}$

WATER USE CRITERIA

		All		Dual	Syste		
Land Use	Unit	Potable	Average	Water Use	Average Daily Demand		
		System	Potable	Non-Potable	Potable	Non-Potable	
Residential							
Single Family	GPD/Unit	500	345	155	414	186	
Multi-Family Low Rise	GPD/Unit	400	276	124	331)	149	
Multi-Family High Rise	GPD/Unit	300	207	93	248	112	
Commercial	GPD/Acre	3,000	1,800	1,200	2,160	1,440	
Resort	GPD/Unit	350	203	147	244	176	
	GPD/Acre	4,000	2,320	1,680	2,784	2,016	
Golf Course and Parks	GPD/Acre	4,000	600	3,400	720	4,080	
School School	GPD/Student	60	35	25	42	30	
Industrial	GPD/Acre	4,000	1,184	2,816	1,421	3,379	
Commercial/Industrial	GPD/1,000 Ft ²	100	60	40	72	48	
Commercial/Residential	GPD/1,000 Ft ²	120	83	37	100	44	

PIPELINE, STORAGE, AND WELL PUMP SIZING CRITERIA

1. Demand Factors

- a. AVERAGE DAY DEMAND. For land uses to be served by a dual system, a 1.2 factor is applied to the AVERAGE WATER USE rates to derive the AVERAGE DAY DEMAND. For land uses served only by the potable system, AVERAGE WATER USE and AVERAGE DAY DEMAND are identical.
- b. MAXIMUM DAY DEMAND = (1.5) AVERAGE DAY DEMAND.
- c. PEAK HOUR RATE = (3.0) AVERAGE DAY DEMAND
- 2. Fire protection can be met in either the potable or non-potable system subject to meeting all present fire protection standards.

3. Reservoir Size

- a. The potable reservoir volume shall be equivalent to MAXIMUM DAY DEMAND.
- b. The non-potable reservoir volume shall be equivalent to AVERAGE DAY DEMAND.
- 4. Potable and non-potable pipelines shall be sized for PEAK HOUR flowrates with a minimum residual pressure of 40 psi and maximum velocity in the main of 6 feet per second. Hydraulic analyses will utilize tank spillway elevations as the initial hydraulic grade line elevations. Pipelines providing fire protection shall also be sized for MAXIMUM DAY flow plus fire flow with a residual of 20 psi at the critical fire hydrant. Hydraulic analyses will use three-quarters full tank water surface elevations as initial hydraulic grade line elevations.
- Well pumps for potable and non-potable systems shall provide MAXIMUM DAY in an operating time of 16 hours.

Source: Honolulu Board of Water Supply, 1984.

APPENDIX B-2

Potable and Non-Potable Water Demand Calculations

Table 1

Projections of Required Potable and Irrigation Supply for Phase 1 of the Expansion of the Maui Research and Technology Park

Development		Aı	rea	Number	Potabl	е	Non-Potak	ole
Area	Land Use	Acres	Ft ²	of Units	Unit Use Rate (GPD / Unit)	Amount (GPD)	Unit Use Rate (GPD / Unit)	Amount (GPD)
Employment Core	Employment	15.7	224,730		84 / 1000 Ft ²	18,877	56 / 1000 Ft ²	12,585
(Portion Not Supplied	Open Space (PI)	3.2		non non		, 	1700 / Ac.	5,440
by DWS)	Roads	1.8					880 / Ac.	1,584
	Totals	20.7	224,730	0		18,877	-	19,609
Village Center	Hotel	2.1	60,000	150	203 / Unit	30,450	147 / Unit	22,050
	Mixed Use	8.9	109,200		84 / 1000 Ft ²	9,173	56 / 1000 Ft ²	6,115
	SF Residential	11.1		100	6000 / Unit	60,000		
	MF Residential	9.9		300	386 / Unit	115,800	174 / Unit	52,200
	Civic	10.1	100,000		84 / 1000 Ft ²	8,400	56 / 1000 Ft ²	5,600
	Park	3.2			600 / Acre	1,920	3400 / Ac.	10,880
	Open Space (FI)	0.4					3400 / Ac.	1,360
	Open Space (PI)	0.75					1700 / Ac.	1,275
	Retention (PI)	1.9					1700 / Ac.	3,230
	Roads	13.8					880 / Ac.	12,144
	Totals	62.15	269,200	550		225,743	-	114,854
Makai Residential	SF Residential	21.0		350	600 / Unit	210,000		
	Park	2.1			600 / Acre	1,260	3400 / Ac.	7,140
	Open Space (FI)	0.2					3400 / Ac.	680
	Open Space (PI)	4.8					1700 / Ac.	8,160
	Roads	11.0					880 / Ac.	9,680
	Totals	39.1	0	350		211,260		25,660
Drainage Retention	Open Space (PI)	5.5					1700 / Ac.	9,350
	Roads	0.32					880 / Ac.	282
	Totals	5.82	0	0				9,632
Totals for	Phase 1	127.8	493,930	900		455,880		169,755

Source:

Tom Nance Water Resource Engineering, "Evaluation of Source Supply Alternatives for the Planned Expansion of the Maui Research and Technology Park," March 1, 2012.

Table 2

Projections of Required Potable and Irrigation Supply for Phase 2 of the Expansion of the Maui Research and Technology Park

Development		Ar	ea	Number	Potabl	е	Non-Potal	ole
Area	Land Use	Acres	Ft ²	of Units	Unit Use Rate (GPD / Unit)	Amount (GPD)	Unit Use Rate (GPD / Unit)	Amount (GPD)
Knowledge Industry	Employment	40.9	188,272		84 / 1000 Ft ²	15,815	56 / 1000 Ft ²	10,543
Expansion Campus	Mixed Use / Flex	2.2	33,200		84 / 1000 Ft ²	2,789	56 / 1000 Ft ²	1,859
	Employment (Reserve)	11.4			1800 / Ac.	20,520	1200 / Ac.	13,680
	Park	1.6			600 / Ac.	960	3400 / Ac.	5,440
	Traffic Circle (FI)	0.2					3400 / Ac.	680
	Open Space (PI)	12.1					1700 / Ac.	20,570
	Roads	7.6					880 / Ac.	6,688
	Totals	76.0	221,472	0		40,084		59,460
Option Land	SF Residential	28.6		300	600 / Unit	180,000		
	MF Residential	5.9		179	386 / Unit	69,094	174 / Unit	31,146
	Employment	26.5	403,718		84 / 1000 Ft ²	33,867	56 / 1000 Ft ²	22,578
	Employment (Reserve)	8.0			1800 / Ac.	14,400	1200 / Ac.	9,600
	Parks	7.9			600 / Ac.	4,740	3400 / Ac.	26,860
	Traffic Circle (FI)	0.2					3400 / Ac.	680
	Open Space (PI)	18.9					1700 / Ac.	32,130
	Roads	24.0					880 / Ac.	21,120
	Totals	120.0	403,718	479		302,101		144,114
Totals fo	r Phase 2	196.0	625,190	479		342,185		203,574

Source:

Tom Nance Water Resource Engineering, "Evaluation of Source Supply Alternatives for the Planned Expansion of the Maui Research and Technology Park," March 1, 2012.

APPENDIX C

Drainage Calculations

Hydrologic Calculations

Offsite:

The hydrologic calculations for drainage areas larger than 100 acres are based on the hydrograph method developed by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS)¹ and described in the "SCS National Engineering Handbook, Section 4, Hydrology (NEH-4)". Calculations were carried out using the "SCS Computer Program for Project Formulation, Hydrology (TR-20)", which utilizes the computational procedure described in NEH-4.

The curve numbers (CN) used in the hydrologic calculations were derived from USDA soil series and hydrologic group information and existing and proposed land uses for the relevant study area as recommended by USDA-NRCS in its publications entitled "Erosion and Sediment Control Guide for Hawaii" and "Urban Hydrology for Small Watersheds". Weighted curve numbers were computed whenever a study area possessed a non-homogeneous mix of characteristics.

Concentration times used in hydrologic calculations were derived using the Curve Number (Lag) Method described in NEH-4.

100 yr.-24 hr. rainfall was obtained from Figure 56 in the Rainfall Frequency Atlas of the

¹Formerly known as the USDA Soil Conservation Service (SCS)

²United States Department of Agriculture, Soil Conservation Service, <u>Erosion and Sediment Control</u>, March 1981.

³United States Department of Agriculture, Soil Conservation Service, <u>Urban Hydrology for Small Watersheds</u>, June 1986.

Hawaiian Islands.⁴ A 100 yr.-24 hr. rainfall of 10 inches was used for offsite drainage area computations.

Onsite:

According to the "Rules for the Design of Storm Drainage Facilities in the County of Maui," the runoff quantity for drainage areas of 100 acres or less is calculated using the Rational Method. The design storm is a 50-year recurrence interval, 1-hour duration storm and the precipitation is 2.3 inches.

Rational Formula:

$$Q = C \cdot I \cdot A$$

where, $Q = rate \ of \ flow \ (cubic feet per second)$

C = runoff coefficient

I = rainfall intensity (inches per hour)

A = area (acres)

⁴U.S. Weather Bureau, U.S. Department of Commerce, <u>Rainfall Frequency Atlas of the Hawaiian Islands</u>, Washington D.C.: U.S. Government Printing Office, 1962.

⁵County of Maui, Department of Public Works and Waste Management, "Rules for the Design of Storm Drainage Facilities in the County of Maui," November 2, 1995.

APPENDIX C-1

Offsite Surface Runoff (100-yr./24-hr.)

Type.... Master Network Summary Page 2.01

Name.... Watershed

File.... V:\Projdata\08proj\08028 (Maui R&T Park - Master Plan)\Calcs\R&T Park\offsite.ppw

MASTER DESIGN STORM SUMMARY

Network Storm Collection: MyCounty

Total

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

Node ID		Type	Return Event	HYG Vol ac-ft	Trun	Qpeak hrs	Qpeak cfs	Max WSEL ft	Max Pond Storage ac-ft
10A-RB		AREA	100	61.349		10.3500	266.45		
11RB		AREA	100	35.822		10.0500	243.20		
13RB		AREA	100	16.194		10.0000	127.48		
14RB		AREA	100	131.396		10.5500	459.94		
14RC		AREA	100	7.232		10.0000	59.88		
15RB		AREA	100	79.150		10.3500	332.73		
15RC		AREA	100	1.679		9.9500	15.01		
16RB		AREA	100	31.091		10.0500	227.22		
17-R		AREA	100	3.720		10.0000	30.59		
*OUT 10		JCT	100	367.633		10.1000	1317.53		
POND 10	IN	POND	100	367.633		10.1000	1317.53		

Type.... Master Network Summary Page 2.01

Name.... Watershed

File.... V:\Projdata\08proj\08028 (Maui R&T Park - Master Plan)\Calcs\R&T Park\offsite.ppw

MASTER NETWORK SUMMARY SCS Unit Hydrograph Method

(*Node=Outfall; +Node=Diversion;)
(Trun= HYG Truncation: Blank=None; L=Left; R=Rt; LR=Left&Rt)

						Max
	Return	HYG Vol	Qpeak	Qpeak	Max WSEL	Pond Storage
Node ID	Type Event	ac-ft Trun	hrs	cfs	ft	ac-ft
POND 10	OUT POND 100	367.633	10.1000	1317.53		

S/N: FCYXYWHN7K7A
Bentley PondPack (10.00.022.00)

APPENDIX C-2

Pre-Development Onsite Surface Runoff (50-yr./1-hr.)

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028
Engineer: Derek T. Ono
Date: 3/29/11

Date. 3

Area

Description: Pre-development onsite discharge [1]

Area (A):

30.52 acres

Impervious Area:

0.00 acres

Runoff Coefficient

Impervious Runoff Coefficient: 0.95

Weighted Runoff Coefficient (C): 0.25

Time of Concentration

Runoff Length:

880 ft.

Average Slope:

4.1 %

Time of Concentration (T_c):

20 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.80 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$

= 29.0

ft.3/sec.

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028
Engineer: Derek T. Ono

Date: 3/29/11

Area

Description: Pre-development onsite discharge [2]

Area (A):

85.22 acres

Impervious Area: 0.00 acres

Runoff Coefficient

Composite Runoff Coefficient: 0.25

Impervious Runoff Coefficient: 0.95

Weighted Runoff Coefficient (C): 0.25

Time of Concentration

Runoff Length:

2000 ft.

Average Slope:

3.0 %

Time of Concentration (T_c):

29 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.31 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$

= 70.5

ft.3/sec.

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028

Engineer: Derek T. Ono Date: 3/29/11

Area

Description: Pre-development onsite discharge [3]

Area (A):

68.77 acres

Impervious Area:

0.00 acres

Runoff Coefficient

Infiltration: [Medium] \rightarrow 0.07 Relief: [Flat] \rightarrow 0

Vegetal Cover:[Good] \rightarrow 0.03Development:[Agricultural] \rightarrow 0.15

Composite Runoff Coefficient: 0.25

Impervious Runoff Coefficient: 0.95

Weighted Runoff Coefficient (C): 0.25

Time of Concentration

Runoff Length: 3267 ft.

Average Slope: 3.0 %

Time of Concentration (T_c) : 34 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth: 2.3 in.
Intensity (I): 3.12 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$ = 53.6 ft. \(^3/\)sec.

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028

Engineer: Derek T. Ono Date: 5/2/11

Area

Description: Pre-development onsite discharge [4]

Area (A):

24.83 acres

Impervious Area:

0.74 acres

Commercial Area:

0.6 acres

Runoff Coefficient

Infiltration: [Medium]

Relief: [Flat] Vegetal Cover: [Good] 0.03

Development: [Agricultural] 0.15

Composite Runoff Coefficient: 0.25

0.07

0

Impervious Runoff Coefficient: 0.95

Commercial Runoff Coefficient: 0.80

Weighted Runoff Coefficient (C): 0.28

Time of Concentration

Runoff Length:

2410 ft.

Average Slope:

2.7 %

Time of Concentration (T_c):

31 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm:

50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.22 in./hr.

Flow Rate

O = $C \cdot I \cdot A$

> ft.3/sec. 22.7

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028
Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Pre-development onsite discharge [5]

Area (A):

66.39 acres

Impervious Area:

7.32 acres

Commercial Area:

8.3 acres

Runoff Coefficient

Infiltration: [Medium] \rightarrow 0.07

Relief: [Flat] \rightarrow 0 Vegetal Cover: [Good] \rightarrow 0.03 Development: [Agricultural] \rightarrow 0.15

Composite Runoff Coefficient: 0.25

Impervious Runoff Coefficient: 0.95 Commercial Runoff Coefficient: 0.80

Weighted Runoff Coefficient (C): 0.40

Time of Concentration

Runoff Length:

2679 ft.

Average Slope:

2.4 %

Time of Concentration (T_c):

33.5 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.14 in./hr.

ft.3/sec.

Flow Rate

 $Q = C \cdot I \cdot A$

82.5

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028

Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Pre-development onsite discharge [6]

Area (A):

45.07 acres

Impervious Area:

1.40 acres

Commercial Area:

6.81 acres

Runoff Coefficient

Infiltration:

0.07 [Medium]

Relief:

[Flat]

Vegetal Cover: Development:

[Good] 0.03 [Agricultural] 0.15

Composite Runoff Coefficient:

0.25

0

Impervious Runoff Coefficient:

0.95 0.80

Commercial Runoff Coefficient:

Weighted Runoff Coefficient (C):

0.35

Time of Concentration

Runoff Length:

2340 ft.

Average Slope:

3.8 %

Time of Concentration (T_c):

29 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.31 in./hr.

Flow Rate

0 = $C \cdot I \cdot A$

52.9

ft.3/sec.

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028
Engineer: Derek T. Ono
Date: 3/29/11

Area

Description: Pre-development onsite discharge [7]

Area (A): 40.48 acres Impervious Area: 0.00 acres

Runoff Coefficient

Composite Runoff Coefficient: 0.25

Impervious Runoff Coefficient: 0.95

Weighted Runoff Coefficient (C): 0.25

Time of Concentration

Runoff Length: 2497 ft.

Average Slope: 3.0 %

Time of Concentration (T_c) : 30.5 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth: 2.3 in.

Intensity (I): 3.23 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$ = 32.7 ft. \(^3\)/sec.

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028

Engineer: Derek T. Ono Date: 3/29/11

Area

Description: Pre-development onsite discharge [8]

Area (A):

32.53 acres

Impervious Area:

0.00 acres

Runoff Coefficient

Infiltration: [Medium] \rightarrow 0.07

Relief: [Flat] \rightarrow 0
Vegetal Cover: [Good] \rightarrow 0.03
Development: [Agricultural] \rightarrow 0.15

Impervious Runoff Coefficient: 0.95

Weighted Runoff Coefficient (C): 0.25

Time of Concentration

Runoff Length: 2104 ft.

Average Slope: 4.1 %

Time of Concentration (T_c) : 28 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth: 2.3 in.

Intensity (I): 3.36 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$

27.3 ft.³/sec.

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028
Engineer: Derek T. Ono
Date: 3/29/11

Area

Description: Pre-development onsite discharge [9]

Area (A): 5.75 acres Impervious Area: 0.00 acres

Runoff Coefficient

Composite Runoff Coefficient: 0.28

Impervious Runoff Coefficient: 0.95

Weighted Runoff Coefficient (C): 0.25

Time of Concentration

Runoff Length: 659 ft. Average Slope: 5.6 %

Time of Concentration (T_c) : 16.5 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth: 2.3 in.
Intensity (I): 4.13 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$ = 5.9 ft. \(^3/\)sec.

APPENDIX C-3

Post-Development Onsite Surface Runoff (50-yr./1-hr.)

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028
Engineer: Derek T. Ono
Date: 3/29/11

Area

Description: Post-development onsite discharge [1]

Area (A): 30.52 acres

Runoff Coefficient

Weighted Runoff Coefficient (C): 0.55

880 ft.

Time of Concentration

Runoff Length:

Average Slope: 4.1 %

Time of Concentration (T_c) : 20 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth: 2.3 in.

Intensity (I): 3.80 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$ = 63.8 ft. 3 /sec.

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono

Date: 3/29/11

Area

Description: Post-development onsite discharge [2]

Area (A): 85.22 acres

Runoff Coefficient

Weighted Runoff Coefficient (C):

0.55

Time of Concentration

Runoff Length:

2000 ft.

Average Slope:

3.0 %

Time of Concentration (T_c):

29 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.31 in./hr.

Flow Rate

 $C \cdot I \cdot A$ Q =

155.1

ft.3/sec.

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028

Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [3]

Area (A):

68.77 acres

Impervious Area:

10.94 acres

Commercial Area:

46.45 acres

Runoff Coefficient

Infiltration:

[Medium] 0.07

Relief:

[Flat] [Good]

Vegetal Cover: Development:

0.03 [Agricultural] 0.15

Composite Runoff Coefficient:

0.25

0

Impervious Runoff Coefficient:

0.95 0.80

Commercial Runoff Coefficient:

0.73

Weighted Runoff Coefficient (C):

Time of Concentration

Runoff Length:

3267 ft.

Average Slope:

3.0 %

Time of Concentration (T_c):

34 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.12 in./hr.

Flow Rate

 $C \cdot I \cdot A$

157.2

ft.3/sec.

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028
Engineer: Derek T. Ono
Date: 5/2/11

Area

Description: Post-development onsite discharge [4]

Area (A):

24.83 acres

Impervious Area:

3.34 acres

Commercial Area:

20.04 acres

Runoff Coefficient

Infiltration: [Medium] \rightarrow Relief: [Flat] \rightarrow

Vegetal Cover: [Good] \rightarrow 0.03 Development: [Agricultural] \rightarrow 0.15

Composite Runoff Coefficient: 0.25

0.07

0

Impervious Runoff Coefficient: 0.95 Commercial Runoff Coefficient: 0.80

Weighted Runoff Coefficient (C): 0.79

Time of Concentration

Runoff Length:

2410 ft.

Average Slope:

2.7 %

Time of Concentration (T_c):

31 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.22 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$

63.0 ft.³/sec.

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028
Engineer: Derek T. Ono
Date: 5/2/11

Area

Description: Post-development onsite discharge [5]

Area (A): 66.39 acres
Impervious Area: 9.69 acres
Commercial Area: 55.40 acres

Runoff Coefficient

> Impervious Runoff Coefficient: 0.95 Commercial Runoff Coefficient: 0.80

Weighted Runoff Coefficient (C): 0.81

Time of Concentration

Runoff Length: 2679 ft. Average Slope: 2.4 %

Time of Concentration (T_c) : 33.5 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth: 2.3 in.
Intensity (I): 3.14 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$ = 169.1 ft. \(^3\)/sec.

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono Date: 5/2/11

Area

Description: Post-development onsite discharge [6]

Area (A): 45.07 acres Impervious Area: 3.36 acres Commercial Area: 34.27 acres

Runoff Coefficient

Composite Runoff Coefficient: 0.25

Impervious Runoff Coefficient: 0.95 Commercial Runoff Coefficient: 0.80

Weighted Runoff Coefficient (C): 0.72

Time of Concentration

Runoff Length: 2340 ft. Average Slope: 3.8 %

Time of Concentration (T_c): 29 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth: 2.3 in.
Intensity (I): 3.31 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$ = 107.5 ft. 3/sec.

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [7]

Area (A):

40.48 acres

Impervious Area:

3.34 acres

Commercial Area:

34.30 acres

Runoff Coefficient

0.07 Infiltration: [Medium] Relief: [Flat] 0

Vegetal Cover: [Good] 0.03 Development: [Agricultural] 0.15

> Composite Runoff Coefficient: 0.25

Impervious Runoff Coefficient: 0.95 Commercial Runoff Coefficient: 0.80

Weighted Runoff Coefficient (C): 0.77

Time of Concentration

Runoff Length:

2497 ft.

Average Slope:

3.0 %

Time of Concentration (T_c):

30.5 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm:

50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.23 in./hr.

Flow Rate

O = $C \cdot I \cdot A$

> ft.3/sec. 101.2

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono Date: 5/2/11

Area

Description: Post-development onsite discharge [8]

Area (A): 32.53 acres Impervious Area: 1.29 acres Commercial Area: 28.74 acres

Runoff Coefficient

Composite Runoff Coefficient: 0.25

Impervious Runoff Coefficient: 0.95 Commercial Runoff Coefficient: 0.80

Weighted Runoff Coefficient (C): 0.76

Time of Concentration

Runoff Length: 2104 ft. Average Slope: 4.1 %

Time of Concentration (T_c): 28 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth: 2.3 in.
Intensity (I): 3.36 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$ = 83.5 ft. 3/sec.

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [9]

Area (A):

5.75 acres

Impervious Area:

0.21 acres

Commercial Area:

5.39 acres

Runoff Coefficient

Infiltration:

0.07 [Medium]

Relief:

[Rolling] 0.03 0.03

Vegetal Cover: Development:

[Good] [Agricultural] 0.15

Composite Runoff Coefficient:

0.28

Impervious Runoff Coefficient:

0.95 0.80

Commercial Runoff Coefficient:

Weighted Runoff Coefficient (C):

0.79

Time of Concentration

Runoff Length:

659 ft.

Average Slope:

5.6 %

Time of Concentration (T_c) :

16.5 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm:

50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

4.13 in./hr.

Flow Rate

Q = $C \cdot I \cdot A$

18.8

APPENDIX C-4

Post-Development Onsite Surface Runoff Impact of Roadways and Residential Areas (50-yr./1-hr.)

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono

Date: 3/29/11

Area

Description: Post-development onsite discharge [1]

(for roadways and residential areas)

Area (A): 30.52 acres

Runoff Coefficient

Weighted Runoff Coefficient (C): 0.55

Time of Concentration

Runoff Length:

880 ft.

Average Slope:

4.1 %

Time of Concentration (T_c):

20 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.80 in./hr.

Flow Rate

0 = $C \cdot I \cdot A$

63.8

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028

Engineer: Derek T. Ono

Date: 3/29/11

Area

Description: Post-development onsite discharge [2]

(for roadways and residential areas)

Area (A):

85.22 acres

Runoff Coefficient

Weighted Runoff Coefficient (C):

0.55

Time of Concentration

Runoff Length:

2000 ft.

Average Slope:

3.0 %

Time of Concentration (T_c) :

29 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.31 in./hr.

Flow Rate

Q = $C \cdot I \cdot A$

155.1

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono Date: 5/2/11

Area

Description: Post-development onsite discharge [3]

(for roadways and residential areas)

Area (A): 68.77 acres
Impervious Area: 10.94 acres

Runoff Coefficient

Composite Runoff Coefficient: 0.25

Impervious Runoff Coefficient: 0.95

Weighted Runoff Coefficient (C): 0.38

Time of Concentration

Runoff Length: 3267 ft. Average Slope: 3.0 %

Time of Concentration (T_c) : 34 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth: 2.3 in.
Intensity (I): 3.12 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$ = 81.5 ft. \(^3\)/sec.

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028

Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [4]

(for roadways and residential areas)

Area (A):

24.83 acres

Impervious Area:

3.34 acres

Runoff Coefficient

Infiltration: [Medium] \rightarrow 0.07

Relief: [Flat] \rightarrow 0 Vegetal Cover: [Good] \rightarrow 0.03 Development: [Agricultural] \rightarrow 0.15

Composite Runoff Coefficient: 0.25

Impervious Runoff Coefficient: 0.95

Weighted Runoff Coefficient (C): 0.34

Time of Concentration

Runoff Length:

2410 ft.

Average Slope:

2.7 %

Time of Concentration (T_c) :

31 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.22 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$

27.5

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028

Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [5]

(for roadways and residential areas)

Area (A):

66.39 acres

Impervious Area:

9.69 acres

Commercial Area:

8.30 acres

Runoff Coefficient

[Medium] Infiltration:

0.07

Relief:

Vegetal Cover: Development: 0.03

[Agricultural] Composite Runoff Coefficient:

[Flat]

[Good]

0.15 0.25

0

0.95

Impervious Runoff Coefficient: Commercial Runoff Coefficient:

0.80

Weighted Runoff Coefficient (C):

0.42

Time of Concentration

Runoff Length:

2679 ft.

Average Slope:

2.4 %

Time of Concentration (T_c):

33.5 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.14 in./hr.

Flow Rate

Q = $C \cdot I \cdot A$

87.7

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [6]

(for roadways and residential areas)

Area (A):

45.07 acres

Impervious Area:

3.36 acres

Commercial Area:

6.81 acres

Runoff Coefficient

Infiltration: [Medium] 0.07 Relief: [Flat] 0 [Good] Vegetal Cover: 0.03 Development: [Agricultural] 0.15

Composite Runoff Coefficient:

Impervious Runoff Coefficient:

0.95

0.25

Commercial Runoff Coefficient:

0.80

Weighted Runoff Coefficient (C):

0.39

Time of Concentration

Runoff Length:

2340 ft.

Average Slope:

3.8 %

Time of Concentration (T_c) :

29 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.31 in./hr.

Flow Rate

Q = $C \cdot I \cdot A$

57.5

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028

Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [7]

(for roadways and residential areas)

Area (A):

40.48 acres

Impervious Area:

3.34 acres

Runoff Coefficient

Infiltration:

0.07 [Medium]

Relief:

0

Vegetal Cover: Development:

0.03 [Good] [Agricultural] 0.15

Composite Runoff Coefficient:

[Flat]

0.25

Impervious Runoff Coefficient:

0.95

Weighted Runoff Coefficient (C):

0.31

Time of Concentration

Runoff Length:

2497 ft.

Average Slope:

3.0 %

Time of Concentration (T_c):

30.5 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.23 in./hr.

Flow Rate

0 = $C \cdot I \cdot A$

40.2

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [8]

(for roadways and residential areas)

Area (A):

32.53 acres

Impervious Area:

1.29 acres

Runoff Coefficient

Infiltration: [Medium] \rightarrow 0.07

Relief: [Flat] \rightarrow 0 Vegetal Cover: [Good] \rightarrow 0.03 Development: [Agricultural] \rightarrow 0.15

Composite Runoff Coefficient: 0.25

Impervious Runoff Coefficient: 0.95

Weighted Runoff Coefficient (C): 0.28

Time of Concentration

Runoff Length:

2104 ft.

Average Slope:

4.1 %

Time of Concentration (T_c):

28 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.36 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$

= 30.4

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [9]

(for roadways and residential areas)

Area (A):

5.75 acres

Impervious Area:

0.21 acres

Runoff Coefficient

Infiltration:

[Medium] 0.07 [Rolling] 0.03

Relief: Vegetal Cover:

0.03

Development: [Agricultural] Composite Runoff Coefficient: 0.15 0.28

Impervious Runoff Coefficient:

[Good]

0.95

Weighted Runoff Coefficient (C):

0.30

Time of Concentration

Runoff Length:

659 ft.

Average Slope:

5.6 %

Time of Concentration (T_c) :

16.5 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

4.13 in./hr.

Flow Rate

0 = $C \cdot I \cdot A$

7.2

APPENDIX C-5

Post-Development Onsite Surface Runoff Impact of Commercial Areas (50-yr./1-hr.)

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

08028 Project No.: Engineer: Derek T. Ono Date: 3/29/11

Area

Description: Post-development onsite discharge [1]

(for commercial areas)

Area (A): 30.52 acres

Runoff Coefficient

Infiltration: [Medium] 0.07 Relief: [Flat] 0 Vegetal Cover: [Good] 0.03 Development: [Agricultural] 0.15

> Composite Runoff Coefficient: 0.25

Weighted Runoff Coefficient (C): 0.25

Time of Concentration

Runoff Length: 880 ft.

Average Slope: 4.1 %

Time of Concentration (T_c): 20 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth: 2.3 in.

3.80 in./hr. Intensity (I):

Flow Rate

Q = $C \cdot I \cdot A$ ft.3/sec. 29.0

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028
Engineer: Derek T. Ono
Date: 3/29/11

Area

Description: Post-development onsite discharge [2]

(for commercial areas)

Area (A):

85.22 acres

Runoff Coefficient

Composite Runoff Coefficient: 0.25

Weighted Runoff Coefficient (C): 0.25

Time of Concentration

Runoff Length: 2000 ft.

Average Slope: 3.0 %

Time of Concentration (T_c) : 29 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth: 2.3 in.
Intensity (I): 3.31 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$ $= 70.5 ft.^{3}/sec.$

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [3]

(for commercial areas)

Area (A):

68.77 acres

Commercial Area:

46.45 acres

Runoff Coefficient

Infiltration: [Medium] Relief: [Flat]

[Good]

0 0.03

Vegetal Cover: Development:

[Agricultural] Composite Runoff Coefficient: 0.15 0.25

0.07

Commercial Runoff Coefficient:

0.80

Weighted Runoff Coefficient (C):

0.60

Time of Concentration

Runoff Length:

3267 ft.

Average Slope:

3.0 %

Time of Concentration (T_c) :

34 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.12 in./hr.

Flow Rate

 $C \cdot I \cdot A$ O =

128.7

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [4]

(for commercial areas)

Area (A):

24.83 acres

Impervious Area:

0.74 acres

Commercial Area:

20.04 acres

Runoff Coefficient

Infiltration: [Medium] Relief: [Flat]

0.07

0

Vegetal Cover:

[Good] 0.03

Development: [Agricultural] 0.15 0.25

Composite Runoff Coefficient:

Impervious Runoff Coefficient:

Commercial Runoff Coefficient:

0.95 0.80

Weighted Runoff Coefficient (C):

0.71

Time of Concentration

Runoff Length:

2410 ft.

Average Slope:

2.7 %

Time of Concentration (T_c):

31 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.22 in./hr.

Flow Rate

Q = $C \cdot I \cdot A$

57.1

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [5]

(for commercial areas)

Area (A):

66.39 acres

Impervious Area: Commercial Area: 7.32 acres

55.40 acres

Runoff Coefficient

Infiltration: Relief:

0.07 0

Vegetal Cover: Development:

[Flat] [Good] [Agricultural]

[Medium]

0.03 0.15

Composite Runoff Coefficient:

0.25

Impervious Runoff Coefficient:

0.95

Commercial Runoff Coefficient:

0.80

Weighted Runoff Coefficient (C):

0.79

Time of Concentration

Runoff Length:

2679 ft.

Average Slope:

2.4 %

Time of Concentration (T_c):

33.5 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.14 in./hr.

Flow Rate

 $C \cdot I \cdot A$ Q =

163.9

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [6]

(for commercial areas)

Area (A):

45.07 acres

Impervious Area:

1.40 acres

Commercial Area:

34.27 acres

Runoff Coefficient

Infiltration: Relief: [Medium] [Flat]

0.07 0

Vegetal Cover: Development:

[Good] [Agricultural] 0.03 0.15

Composite Runoff Coefficient:

0.25

0.95

Impervious Runoff Coefficient: Commercial Runoff Coefficient:

0.80

Weighted Runoff Coefficient (C):

0.69

Time of Concentration

Runoff Length:

2340 ft.

Average Slope:

3.8 %

Time of Concentration (T_c):

29 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.31 in./hr.

Flow Rate

Q = $C\cdot I\cdot A$

102.9

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [7]

(for commercial areas)

Area (A):

40.48 acres

Commercial Area:

34.30 acres

Runoff Coefficient

Infiltration:

[Medium]

Relief: Vegetal Cover:

[Flat] [Good] 0.03

Development: [Agricultural] Composite Runoff Coefficient: 0.15 0.25

0.07

0

Commercial Runoff Coefficient:

0.80

Weighted Runoff Coefficient (C):

0.72

Time of Concentration

Runoff Length:

2497 ft.

Average Slope:

3.0 %

Time of Concentration (T_c) :

30.5 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.23 in./hr.

Flow Rate

Q = $C \cdot I \cdot A$

93.6

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028

Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [8]

(for commercial areas)

Area (A):

32.53 acres

Commercial Area:

28.74 acres

Runoff Coefficient

Infiltration:

[Medium]

0.07

0

Relief: Vegetal Cover:

[Flat] [Good]

0.03

Development:

[Agricultural]

0.15 0.25

Composite Runoff Coefficient:

Commercial Runoff Coefficient:

0.80

Weighted Runoff Coefficient (C):

0.74

Time of Concentration

Runoff Length:

2104 ft.

Average Slope:

4.1 %

Time of Concentration (T_c):

28 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

3.36 in./hr.

Flow Rate

O = $C \cdot I \cdot A$

80.4

HYDROLOGIC CALCULATIONS - Surface Runoff

Project Name: Maui Research & Technology Park

Project No.: 08028 Engineer: Derek T. Ono

Date: 5/2/11

Area

Description: Post-development onsite discharge [9]

(for commercial areas)

Area (A):

5.75 acres

Commercial Area:

5.39 acres

Runoff Coefficient

 $\begin{array}{cccc} \text{Infiltration:} & [\text{Medium}] & \rightarrow & 0.07 \\ \text{Relief:} & [\text{Rolling}] & \rightarrow & 0.03 \\ \end{array}$

Composite Runoff Coefficient: 0.28

Commercial Runoff Coefficient: 0.80

Weighted Runoff Coefficient (C): 0.77

Time of Concentration

Runoff Length:

659 ft.

Average Slope:

5.6 %

Time of Concentration (T_c) :

16.5 minutes

Intensity

Project Location: Kihei, Maui, Hawaii

Design Storm: 50-year recurrence interval, 1-hour duration

Rainfall Depth:

2.3 in.

Intensity (I):

4.13 in./hr.

Flow Rate

 $Q = C \cdot I \cdot A$

= 18.2